

Design and Preliminary Results
from a Computational Thinking Course

Dennis Kafura
Virginia Tech

kafura@cs.vt.edu

Austin Cory Bart
Virginia Tech

acbart@vt.edu

Bushra Chowdhury
Virginia Tech

bushrac@vt.edu

ABSTRACT
This paper describes the design and initial assessment of a general
education course in computational thinking for non-computer
science majors. The key elements of the course include
multidisciplinary cohorts to achieve learning across contexts,
multiple languages/tools, including block-based and textual
programming languages, repeated exposure to the underlying
computational ideas in different forms, and student-defined
projects using real world (“big”) data to heighten motivation
through self-directed contextualized learning. The preliminary
multi-methods assessment shows that the course engendered high
levels of motivation, achieved key objectives for learning in and
across contexts, largely affirmed the choice of languages/tools,
and supported, though less strongly than anticipated, the
motivational effects of real-world data.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science education, Curriculum – computational
thinking, problem-based learning, engagement, group work.

General Terms
 Measurement, Design, Experimentation.

Keywords
Computational Thinking; Big Data; Student Engagement;
Interdisciplinary Cohorts.

1. INTRODUCTION
Believing that a computational mode of thought is valuable to all
members of society, our university recently included learning
objectives for computational thinking in its general education
requirements that must be met by all graduating students.
Informed by a national report [1] , Wing’s writing [2], and the
Computer Science Teachers Association (CSTA) [3] among
others, the university considered computational thinking to be:

The intellectual skills rooted in the ability to conceive of
meaningful information-based representations that can be
effectively manipulated using an automated agent (e.g., a
computer).

In this paper we describe the innovative pedagogical approach and
technology support for an Introduction to Computational Thinking
course and present early results, both quantitative and qualitative,
from a first offering of the course in Fall 2014. In particular, we
focus in this paper on:

 innovative progressive course design in which core concepts
are encountered several times in different contexts (Section 2),

 multidisciplinary “cohorts” to foster collaborative learning and
learning across contexts (Section 3),

 “big data” to enhance the students’ sense of realism and utility,
not just interest (Section 4),

 technology support for cohort interaction and access to big data
through block-based programming, all in an extended web-
based ebook framework (Section 4), and

 preliminary multi-methods assessment of motivation and how
helpful, useful, and interesting different elements were to
students (Section 5).

We believe that the conclusions (Section 6) are valuable to others
in computer science education, especially to those teaching
computational thinking or introductory computer science courses.

The course we created both draws on and is distinct from other
approaches that teach computational thinking, offer an
introduction to computer science, or use big data. As a single
course our approach differs from the inclusion of computational
thinking modules into several required courses in a curriculum
(e.g. general education[4], architecture [5], or the humanities [6]).
As a general education course we differ from the inclusion of
computational thinking into courses that target a specific
discipline (e.g., sciences [7], computer science [8], humanities [9],
and biology [10]). We draw on the ideas of other computational
thinking or introductory computer science courses intended for all
students. Some courses used teams (e.g., [11]), included social
impacts (e.g.,[12]), or employed block-based programming (e.g.,
[13]). All of these elements are integrated in our course. We share
the spirit of the “fluency” approach [14] but trade depth for
breadth (e.g., we include only three of the ten “fluency” concepts.)
We share with the media computation approach [15] the idea of
providing a unifying, open-ended resource (images and sound in
media computation vs. big data in our course). However, we
believe that big data is seen by students as “useful” which is more
engaging than media computation which is seen as “interesting”
[16]. Our course shares with [17] the sense of engaging students
with real world data. What we offer is that the data and questions
to be answered are decided by the student and are not pre-
determined assignments. Though we are using big data our goal is
to teach computational thinking using big data as opposed to the
goal of “data science” courses where big data is itself the object of
study. We have in common with [18] the assessment of big data
approaches though we also include quantitative methods and are

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ITiCSE’15, July 6–8, 2015, Vilnius, Lithuania.
Copyright © 2015 ACM 978-1-4503-3440-2/15/07…$15.00.
http://dx.doi.org/10.1145/2729094.2742593

63

focused on computational thinking rather than an introduction to
computer science course. We also have a shared view with
courses that used block-based programming (Snap!, Scratch, or
App Inventor). What we add to a block-based programming
approach is the connection to realistic big data sources, the ability
to embed the programming in an ebook form to better integrate
learning materials (see Section 4), and automated, guiding
feedback through program analysis.

2. COURSE DESIGN

2.1 Learning Objectives and Dispositions
Four learning objectives for computational thinking were defined
at our university. Students are required to:

1. Formulate problems and find solutions using computational or
quantitative thinking in their field of study.

2. Give examples of the application to, and discuss the
significance of, computational thinking in at least two different
knowledge domains.

3. Apply computational methods to model and analyze complex
or large scale phenomena.

4. Evaluate the social and political impact of computing and
information technologies

In meeting these learning objectives the course design was also
influenced by the CSTA’s “dispositions or attitudes” that a
computational thinker should exhibit [3]:

 “Confidence in dealing with complexity
 Persistence in working with difficult problems
 Tolerance for ambiguity
 The ability to deal with open ended problems
 The ability to communicate and work with others to achieve a

common goal or solution.”

Though defined for K-12 education, these dispositions seem
equally relevant to university-level students. The first four
dispositions influenced our use of student-defined big data
projects where complexity, difficulty, ambiguity and open-
endedness are present. The last disposition influenced our use of
multi-disciplinary cohorts.

2.2 Content
The structure of the course is shown in Table 1. Though shown as
a separate component the social impacts topic is woven
throughout the course. A more complete description of this aspect
of the course is beyond the scope of this paper.

The computational modeling topic uses NetLogo [19], a multi-
agent development and simulation environment. Typical student
work involves a student selecting a model relevant to their major
from the library of pre-defined models in diverse areas (e.g., art,
biology, sciences, games, mathematics, networks, social science,
and system dynamics). Each student reads the description of the
model and performs computational simulations by varying the
model's parameters and observing the model's visualizations.
Students in a cohort demonstrate and explain their models to each
other. Finally, the cohort collectively and each student
individually identify the properties for a model's abstraction and
the programming constructs that manipulate these properties (via
calculation, decision, and iteration). Through this work students
begin to see the role of abstraction, the programming elements
that determine the model’s behavior, and the relevance of these
computational techniques to many areas of study.

The fundamentals of algorithms topic uses a custom version of
Blockly, a block-based programming language. Typical student
work initially involves assembling specialized blocks to perform
visually interesting computations (e.g., guiding an avatar through
a maze using decisions and iteration). Subsequent classwork (in
cohorts) and homework (individually) progressively involves the
full Blockly environment and our custom "big data" blocks which
connect students to realistic data streams. The current example
data streams are in meteorology (weather forecasts), economics
(stock market prices), geosciences (earthquake reports), and
sociology (crime statistics). Initial algorithms constructed in
Blockly use decision and iteration to calculate properties (e.g.,
averages) of data in simple lists while later algorithms involve
more complex logic to filter and transform lists and data with
more complex structure (e.g., the equivalent of Python lists and
dictionaries). Blockly allow students to gain confidence in their
ability to construct algorithm before having to cope with the
syntactic detail of a textual programming language. An important
aspect of Blockly is that the Python code for a Blockly algorithm
can be rendered at the student’s request. This makes the transition
from Blockly to Python a more progressive step for learners.

Table 1: Course Topics

Topic
(Length)

Description

Computational
Modeling

(4 weeks)

Model-based investigation of how complex
global behavior arises from the interaction of
many “agents”, each operating according to
local rules. Students use case-based reasoning
and encounter basic computation constructs in
a highly supportive simulation environment.

Fundamentals
of Algorithms

(2 weeks)

Study of the basic constructs of programming
logic (sequence, decisions, and iteration) and
program organization (procedures). A block-
based programming language is used to avoid
syntactic details. Students can see how these
constructs are expressed in Python.

Data-intensive
Inquiry

(7 weeks)

Project-based exploration of complex
phenomena by algorithmically manipulating
large-scale data from real-world sources.
Students construct algorithms in Python using
a supportive framework for accessing the data.

Social Impacts

(2 weeks)

Explore and discuss contemporary societal
issues involving computing and information
technology.

The data intensive inquiry topic introduced students to a carefully
selected subset of Python. Initial student work involves cutting
and pasting the Python code generated for previous Blockly
exercises into a standard Python programming environment (e.g.,
IDLE or Spyder). This environment offers an important, authentic
programming experience to offset any perceived penalty in
usefulness that students perceive in Blockly. Students are initially
encouraged and progressively discouraged to refer to the Python
code automatically generated for algorithms written in Blockly.
Generation of basic visualizations (line graphs, scatter plots,
histograms) via a Python library is incorporated into the student
work. Finally, students propose, complete and present a multi-
week project that takes advantage of a big data source related to
their major. Big data has become pervasive in almost all
disciplines, so learning to work with it is an authentic, relevant
experience for students that can be customized for each student
while maintaining a common context in the class.

64

The organization of these three topics is progressive, meaning that
each core concept is encountered in three different contexts.
Students see the use of abstraction and algorithms (sequence,
decision, iteration, functions) in the computational modeling topic
by exploring the NetLogo programming of a model of their own
choosing. They encounter these same elements again in the
fundamental of algorithms topic where they modify and create
algorithms in the context of a block-based programming language
extended to access and manipulate big data. Finally, the same
elements are seen a third time in the data-intensive inquiry topic
where a major project is completed in a text-based programming
language (Python).

Both Blockly and Python have been extended to use CORGIS
(Collection of Real-time, Giant, Interesting, Situated) [20], a
publicly available gallery of big data sources designed for
educational use by novice students. The CORGIS project has
many real-world datasets including geological sciences, history,
psychology, social media, and many more. All of the CORGIS
datasets are examples of big data – each having some aspect of
high volume, high velocity, or high variation. The sense of what
constitutes “big” must be interpreted, of course, in relation to the
capability of the students involved. The CORGIS collection is an
open-source project with tools to rapidly create new data sources
for students.

3. PEDAGOGICAL APPROACH
The course work is organized to achieve a balance between
context-based learning and learning across contexts. Context-
based learning provides students with a motivating framework for
their learning [21]. In particular, if computational thinking is
embedded in the disciplinary material of a student’s major there is
greater likelihood that the student will appreciate the relevance of
computational thinking to their own needs and goals. In addition,
the meaning of aspects of computational thinking may be more
clearly learned in context because it is related to knowledge with
which the student may already be familiar. However, there are
equally important reasons to learn across contexts. The notion of
transference refers to the ability to use in some context what has
been learned in a different context. Transference is especially
relevant to computational thinking because it is a generic skill that
can be applied in many different situations. Learning across
contexts enhances the ability of a student to recognize in new
situations the applicability of computational thinking.
Furthermore, by seeing computational thinking concepts in
different contexts it is more likely that the student has gained a
clear notion of these concepts. Also, the student may develop a
deeper appreciation for different ways of knowing by appreciating
how techniques relevant to the values and practices of their
primary discipline are also relevant to the values and practices of
other disciplines.

Context-based learning is achieved by allowing each student to
specialize major aspects of their work to be relevant to their
discipline or interests. As an individual, a student self-directs the
selection of a computational model to explore and the selection,
exploration, and completion of a project relevant to their major
field of study. To support students’ self-direction we have used
the CORGIS tools to quickly create new data sources for students
who could not find a suitable library in the existing collection.

Learning across contexts is achieved by organizing students into
interdisciplinary [22] cohorts that foster collaborative learning
[23]. Each cohort contains students with 4 or 5 different majors.
Students will perform all class room activities within these

groups. Students also collaborate virtually using the course book,
a custom-built, interactive web-based platform with embedded
coding activities and real-time, shared text writing (similar to
Google Docs). Collaborative learning also relates to each
student’s role in their cohort [23]. As a member of the cohort, a
student is responsible for:

Presentation: describing to the other cohort members the
significance of the project they have selected.

Interaction: asking questions and providing feedback about the
projects of other cohort members, thereby gaining insight into
how computational techniques are used across disciplines.

Support: helping other members of the cohort with the mechanics
of the tools and frameworks that are common across projects.

The assumption is that collaboratively learning computational
thinking within interdisciplinary cohorts will foster “learning
across contexts”. The expectation is that regular interaction with
peers from different disciplines will provide students an
opportunity to share and listen to others perspective. This will
help students to form an understanding of how computational
thinking applies in other disciplines.

4. TECHNOLOGICAL INNOVATION
A key technological element of this class is an open-source e-
textbook platform named "Rhinestone", based on the popular
Runestone project [24]. Rhinestone is a port of Runestone from
the Web2py web framework to the Flask web framework, making
it easier to extend Rhinestone with new features and directives to
support the general education needs of our classroom.

Rhinestone’s biggest extension is automatic, continuous server-
side storage of all student work as changes occur. This extension
uses HTML5 local storage features to robustly backup data on the
client in the case of disconnection and reducing the responsibility
of students to manage their work. Another new feature is top-level
support for collaboration. This extension allows members of a
cohort to collaborate in the style of Google Docs. The underlying
technology is Google MobWrite [25], a real-time communication
library that provides differential synchronization between multiple
users. Third, rather than being interleaved as in the Runestone
model, the content of the book is divided into two dynamically
linked sections – the readings (largely static content meant to be
the definitive material of the course) and the class/home work
(largely interactive problems and exercises that are completed by
students).

Rhinestone also fully-integrates support for Blockly [26], a block-
based visual programming language by Google that is based
loosely on Scratch. The block-based nature of Blockly empowers
students to focus on the semantics of their algorithm rather than
its syntax. Moreover, Blockly blocks compile directly to
JavaScript, making it runnable from the browser. These blocks
can also be directly rendered as Python source code, which helps
students transition from the high-level block-based programming
to more authentic text-based coding. Our implementation of
Blockly is more than just a coding environment - static program
analysis and unit testing is used to deliver just-in-time, guided
feedback that gives students contextualized assistance. An
instructor identifies constraints for a question that are then
matched with a hint – e.g., if students neglected to use an iteration
block when processing a list of data, the environment links to the
iteration chapter in the book.

65

With the support of CORGIS client libraries, the CORGIS blocks
access rich data streams with apportioned complexity. For
instance, particularly massive datasets can be sampled down for
development purposes, switching to "full" mode on demand.
Similarly, data sources that rely on an external, ever changing
real-time source (such as weather, social media, or earthquake
data) can be cached locally for access in an “offline mode”,
avoiding problems with students’ internet connection and
ensuring reproducibility during development and testing. When
students have finished their development, the “online” access
mode is used instead. Because students are encouraged to find
their own dataset, they have a more personalized, engaged
experience with their programming in comparison to a single set
of instructor-provided data, even if that instructor-provided data is
realistic.

5. PRELIMINARY RESULTS
5.1 Methods

The preliminary results from the first offering of the class in the
Fall 2014 semester include an analysis of student motivation and
the use of cohorts. Survey results are from 20 students in the class,
30% female and 70% male, representing an 80% respondent rate
for the class as a whole. There was very little overlap between
majors, with students in psychology, mechanical engineering,
mathematics, theatre, university studies, and other disciplines. To
assess the motivational impact of our pedagogical approaches and
technological innovations, we surveyed students with the MUSIC
Model of Academic Motivation Inventory (MMAMI). MMAMI is
a validated instrument for measuring students’ beliefs related to
the five key components of the MUSIC model [27]. The version
used in our course consists of 26 statements that students
responded to on a 6-point Likert scale (ranging from “Strong
Disagreement” to “Strong Agreement”). The responses are then
averaged into subscales relating to each of the components of the
MUSIC model – eMpowerment, Usefulness, Success, Interest,
and Caring. Examples of the statements include:

“The knowledge I gain in this course is important for my future.”

“I enjoy completing the coursework.”

Students were also surveyed on the different learning resources
used in this course using a 4-point Likert scale. In particular, they
were asked how helpful the resources were to their learning, their
expectation of the usefulness of the resource to their long-term
goals, and the interestingness of the resource. These questions
asked about students’ experiences listening to lecture, reading the
online textbook, getting help from the instructors in class, and
working with their cohorts, NetLogo, Blockly, Python, and real-
world data.

To better understand the quantitative data, qualitative data about
the class was also collected by observing students working in
cohorts during class time and by interviewing 9 students of the
class at the end of semester. The following sections describe the
findings of both quantitative and qualitative data of the study.

5.2 Analysis of Quantitative Data

As a baseline measure of success, the results from the MUSIC
inventory suggest that students were overall motivated in this
course. Students reported high average scores in all five areas of
the MUSIC model, with no strong standard deviation. The results,
shown in Figure 1, indicate that students “Agreed” in the belief
that they were empowered, able to succeed, cared for, and that the

course was interesting and useful. Our interpretation of this data is
that, at a minimum, this course was successful in engaging
students.

Figure 1: MUSIC Model Results

The follow-up surveys were useful in divining the sources of this
engagement. The survey data is presented for helpfulness (Figure
2), usefulness (Figure 3), and interestingness (Figure 4).

The cohort model was a significant factor in motivation with
students citing it as helping their learning (Figure 2) while also
being both interesting (Figure 3) and useful (Figure 4) to their
long-term goals. In fact, students’ cohorts were considered almost
as useful as the assistance from instructors. Critically, no students
thought that the cohort model was valueless, making the value of
the collaborative learning experience very clear. Similarly, the
negative results from the textbook and lectures, compared to the
positive results from the cohort and instructors, reinforce the
expanding literature on the value of active learning techniques
compared to traditional lecture models.

In terms of the languages, Python was an unsurprisingly popular
component of the course, with high positive results for most
students. This matches recent literature on Python’s suitability for
introductory programming experiences. A more interesting result
is for Blockly – students perceived it as being useful to their
learning (and moderately interesting), but recognized that it had
little long-term usefulness. This matches with the use of Blockly
as “training wheels” for Python, meant to be gracefully discarded
as the students gain familiarity with algorithmic concepts and are
prepared to cope with Python’s syntax.

Figure 2: Survey Results on Helpfulness

The results related to NetLogo are more ambiguous – although
few students found it very uninteresting, few reported it as very

A
gr

ee
m

en
t

Motivational Aspect

Students Agreement with the MUSIC
Model’s Motivational AspectsStrongly

Agree

Strongly
Disagree

0%

25%

50%

75%

100%

%
 o

f
S

tu
de

nt
s

Helpfulness of Resource

A lot

Some

Little to None

66

interesting or very useful to their long-term goals. There are
positives and negatives to the use of NetLogo within this course
that we are still exploring.

Figure 3: Survey Results on Usefulness

Figure 4: Survey Results on Interestingness

5.2 Analysis of Qualitative Data

Group observations (13 hours) and interviews with students (9
students) suggest that working in a cohort was beneficial. While
some class activities were designed to be collaborative, students in
their cohort usually worked on individual problems. If a student
got stuck with a problem s/he would ask other members in their
cohort for help. In some cohorts a more active student would
inquire if other members were stuck with a problem. Students felt
it was easier to ask help from peer members because they were at
the same level of learning.

“It’s nice to have other people that are in a similar level of
learning to you so you can bounce ideas off each other as opposed
to get an explanation from someone who already know the
materials and is trying remember what it is like not know the
material. So it’s getting a better explanation from someone that is
closer to where you are… “(Student1)

Help usually was offered in the form of explanation instead of
providing the answer.

“If we are doing individual work we usually break off and solve
the problems. If we have difficulty we ask the other members.
Usually if we get an explanation that is more about the concept as

opposed to the individual problem we had. So say if we got a
problem with ‘if’ statement, we get an explanation on why our ‘if’
statement wasn’t working as opposed to the right way to write
that individual ‘if’ statement. There is more learning the ‘whys’ as
opposed to the ‘what’ I guess”(Student 1)

Forming cohorts with students from different disciplines allowed
students to better understand the application and implications of
CT across disciplines.

“It offered different perspectives. When we were working with
Netlogo and how we chose a view point, like a program that we
can relate to our major. I know the biology major did one on
AIDS and how it spreads and the other two on voting and voting
habits. And I did something on networking… it was good to open
up and see different perspectives and how programs can be
applied to different focuse” (Student 7)

“Since we all are working on different projects it is kind of
interesting to see what we can do with the data. So like while my
one is working on voting habits and government, I think one of the
other guys is comparing literature and it is just like how you can
approach problems in different ways…” (Student 4)

Apart from understanding concepts, students also found cohort
members useful in locating technical resources or explaining how
to use certain features of a course resource.

“In the beginning of the Blockly program, the airplane, the
diagram, all of that – I really did not know how to do it. It was
easy, but I really did not know how to start it. So I asked my team
member how to start. He explained to me how to start and after
that I was able to do it easily. So it was basically getting to know
the basics of how to start the program and then I was able to do
it.” (Student 5)

Students also appreciated the presence of the instructor and co-
instructor.

“The basic understanding, solidifying the basic understanding of
the underlying principles of programming –that is not something
most people (instructor) will go over, at least at this level I guess.
Having that explained with someone there, who knows the
material and is willing to explain it further, that was just really
helpful…” (Student 1)

Students of this class stated that taking this CT class has helped
them realize the role of computation in their major.

“Taking this course I now realize how much the modeling that we
do in python is being used by people in my major and is seen as a
valuable skill to employers …I did not know (before taking this
course) how thorough and how much it would tie into my major
until I took the class…”(Student 3)

6. CONCLUSIONS
This paper has outlined the design of a general education
university course in computational thinking. The quantitative and
qualitative assessments provide early evidence supporting key
course design decisions and the achievement of important learning
objectives. First, the course engendered a high level of student
motivation and engagement. We see this as an especially critical
finding for a general education course. Second, the
multidisciplinary cohorts were seen as helpful to learning and
useful to student's long-term goals. Importantly, the qualitative
data indicates that the cohorts fostered learning across disciplines,
a key learning objective. Third, the preliminary analysis of the
qualitative data also indicates that students made gains on another

0%
25%
50%
75%

100%

%
 o

f
S

tu
de

nt
s

Long-term Usefulness of Resource

Useless to Very Useless Useful Very Useful

0%

25%

50%

75%

100%

%
 o

f
S

tu
de

nt
s

Interestingness of Resource

Very Interesting
Interesting
Very Uninteresting to Uninteresting

67

key learning objective - a deeper appreciation for the use of
computation in their own disciplines. Fourth, the use of Blockly
and Python were largely supported by the assessment while the
use of NetLogo is more ambiguous and requires further study.
We had expected the assessment to more prominently support the
use of real-world data. While helpful overall the response was
weaker than for the multidisciplinary cohorts and instructors. We
believe that the small negative view of the real-world data on
measures of interestingness and usefulness may be due to the
repeated use of overly simplified big data on exercises and
assignments. We have plans to introduce more varied and more
successively realistic examples of big data in the next offering of
the course and to observe the effect of this change.

7. ACKNOWLEDGMENTS
We thank Jason Riddle and Omar Saleem for preparing big data
resources and Shelli Fowler for use of the TLOS Learning Studio
as our classroom. This work was supported in part by NSF Grant
TUES-1444094.

8. REFERENCES
[1] National Research Council, Report of a Workshop on the

Scope and Nature of Computational Thinking: National
Academy Press, 2010.

[2] J. M. Wing, "Computational thinking," Communications of
the ACM, vol. 49, pp. 33-35, 2006.

[3] International Society for Technology Education. 2011,
Computational Thinking Teacher Resources (Second Edition
ed.). Available: http://www.iste.org/docs/ct-documents/ct-
teacher-resources_2ed-pdf.pdf?sfvrsn=2

[4] L. Perkovik, et al., "A framework for computational thinking
across the curriculum," Proceedings of the Fifteenth Annual
Conference on Innovation and Technology in Computer
Science Education, Bilkent, Ankara, Turkey, 2010.

[5] N. Senske, "A Curriculum for Integrating Computational
Thinking," presented at the ACADIA Regional Conference
2011 Lincoln, Nebraska, 2011.

[6] C. Kuster, et al., "Developing Computational Thinking Skills
across the Undergraduate Curriculum," presented at the 44th
Annual Midwest Instruction and Computing Symposium
(MICS'11), Duluth, MN, 2011.

[7] S. Hambrusch, et al., "A multidisciplinary approach towards
computational thinking for science majors," Proceedings of
the 40th ACM Technical Symposium on Computer Science
Education, Chattanooga, TN, USA, 2009.

[8] D. Kafura and D. Tatar, "Initial experience with a
computational thinking course for computer science
students," Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, Dallas, TX,
USA, 2011.

[9] A. Ritz, "Evolution of a Computational Thinking Course,"
Presentation to CS6604 Class, Ed., ed, 2013.

[10] H. Qin, "Teaching computational thinking through
bioinformatics to biology students," Proceedings of the 40th
ACM Technical Symposium on Computer Science
Education, Chattanooga, TN, USA, 2009.

[11] W. Booth, et al. (2013, Computational Thinking: Building a
Model Curriculum. 11pp. Available:
https://ciiwiki.ecs.baylor.edu/index.php/Computational_Thin
king:_Building_a_Model_Curriculum.

[12] T. J. Cortina, "An introduction to computer science for non-
majors using principles of computation," Proceedings of the
38th ACM Technical Symposium on Computer Science
Education, Covington, Kentucky, USA, 2007.

[13] T. Li and T. Wang, "A Unified Approach to Teach
Computational Thinking for First Year Non–CS Majors in an
Introductory Course," IERI Procedia, vol. 2, pp. 498-503,
2012.

[14] L. Snyder, Fluency with Information Technology, 6th ed.,

Addison-Wesley, 2014.

[15] M. Guzdial, "A media computation course for non-majors,"
SIGCSE Bull., vol. 35, pp. 104-108, 2003.

[16] M. Guzdial and A. E. Tew, "Imagineering inauthentic
legitimate peripheral participation: an instructional design
approach for motivating computing education," Proceedings
of the Second International Workshop on Computing
Education Research, Canterbury, United Kingdom, 2006.

[17] R. E. Anderson, et al., "Introductory programming meets the
real world: using real problems and data in CS1,"
Proceedings of the 45th ACM Technical Symposium on
Computer Science Education, Atlanta, Georgia, USA, 2014.

[18] T. T. Yuen and K. A. Robbins, "A Qualitative Study of
Students' Computational Thinking Skills in a Data-Driven
Computing Class," Trans. Comput. Educ., vol. 14, pp. 1-19,
2014.

[19] U. Wilensky, "Modeling Nature's Emergent Patterns with
Multi-Agent Languages," in Center for Connected Learning
and Computer-Based Modeling, ed. Northwestern
University: Available at:
http://ccl.northwestern.edu/papers/2013/mnep9.pdf, 2013.

[20] A. C. Bart, et al., "Motivating Students with Big Data:
CORGIS and MUSIC," in Splash-E, Portland, Oregon, USA,
2014.

[21] D. I. Cordova and M. R. Lepper, "Intrinsic motivation and
the process of learning: Beneficial effects of
contextualization, personalization, and choice," Journal of
Educational Psychology, vol. 88, pp. 715-730, 1996.

[22] L. R. Lattuca, et al., "Does interdisciplinarity promote
learning? Theoretical support and researchable questions,"
The Review of Higher Education, vol. 28, pp. 23-48, 2004.

[23] P. Dillenbourg, "What do you mean by collaborative
learning?," Collaborative-learning: Cognitive and
Computational Approaches., pp. 1-19, 1999.

[24] B. Miller and D. Ranum, "Runestone interactive: tools for
creating interactive course materials," Proceedings of the
First ACM Conference on Learning @ Scale, Atlanta,
Georgia, USA, 2014.

[25] N. Fraser, "Differential synchronization," Proceedings of the
9th ACM Symposium on Document Engineering, Munich,
Germany, 2009.

[26] Blockly Website. (2014. Available:
https://developers.google.com/blockly/

[27] B. D. Jones and G. Skaggs, "Validation of the MUSIC Model
of Academic Motivation Inventory: A measure of students’
motivation in college courses," in International Conference
on Motivation, Frankfurt, Germany, 2012.

68

