
Position Paper: From Interest to Usefulness with
BlockPy, a Block-based, Educational Environment

Austin Cory Bart, Eli Tilevich, Clifford A. Shaffer, Dennis Kafura
Computer Science

Virginia Tech
Blacksburg, VA 24060

{acbart, tilevich, shaffer, kafura}@vt.edu

Abstract—As block-based environments are used for more ma-
ture audiences, the environments must mature themselves. Based
on holistic theories of academic motivation, this means making the
environment present itself as both interesting and useful, without
sacrificing pedagogical power and scaffolding. We present Data
Science as a potential context that satisfies all of these constraints,
and describe our new block-based programming environment for
education that supports data science from day one: BlockPy,
available at http://think.cs.vt.edu/blockpy/. BlockPy
features a number of powerful, authentic features meant to
promote transfer for students to conventional environments as
they progress. This includes mutual language translation and
interactive feedback, but also powerful tools for getting real-world
data and visualizing it. As we have developed the tool, we have
identified a number of major research questions that should be
answered in order to determine the validity of our hypothesis
and the potential of our approach: in particular, how can this
environment and context support educators and diverse learners
as they progress into conventional environments.

I. PROBLEM

How do we bring introductory computing to mature,
domain-identified undergraduates, who have concerns for both
their own self-efficacy and for the value in learning comput-
ing? Many universities are now defining core credit hours
in subjects such as “Computational Thinking”, introductory
computer science classes meant for solving interdisciplinary
problems using some degree of programming. This means that
universities now have students of every different discipline
and background taking a programming course. Students with
a clearly domain-identified interest (i.e. their major) may view
non-major courses with doubt and suspicion – what does this
have to offer them, and why should they engage?

Our position is that, in order to fully engage all under-
graduate students, an introductory programming environment
should be both interesting and useful, while still promoting
success. Critically, this means that the environment should
enable working with a context that students relate to, enjoy, and
helps them solve useful problems. Further, they should feel that
the material that they’re learning will help them to transition to
more authentic, serious problem-solving of real programming
environments. These changes cannot come at the cost of the
pedagogically valuable scaffolding, but instead should provide
new opportunities for students’ learning.

A. Existing Solutions

Although Block-based environments like Scratch and Snap!
have already been successful with high-school students, they

may not be suitable for more mature but diverse populations. In
addition to side-stepping syntax headaches, Snap! and Scratch
environments make it easier to get working with their motivat-
ing educational context, such as game and animation design,
robots, or media computation, because they expose the range of
actions afforded by the context (e.g., a “draw a circle” block for
media computation) and support the experiences directly (e.g.,
a drawing canvas embedded within the environment). These
contexts can be popular with certain students: young male
children usually enjoy creating games, for example, so game
and animation design is a compelling hook. However, many
students at the undergraduate level may doubt the usefulness
of the environment, as they consider it a toy rather than a
useful tool, not only because of the puzzle-piece metaphor
they utilize, but also for the evironments’ contexts.

B. A New Solution: Data Science

We submit Data Science Exploration as an educational
context that block-based environments should support as a
priority, similar to how Snap! and Scratch support game
design. Data Science for Introductory Computing is a growing
movement, with many instructors recognizing the inherent
value [1], [2] Data science provides an authentic, useful
context for every kind of student, since exploring data-oriented
problems is something that almost all fields are beginning
to find relevant [3], [4]. Additionally, it is readily possible
to find data sources that connect to the world around the
student and their past experiences, establishing a sense of
personalized interest. When students inevitably ask, “What am
I going to be using this for?”, it is possible to point to well-
defined data problems in their field requiring computation. This
does not mean that we are creating an end-user programming
environment for data science, however, but an educational
environment that allows students to learn computing principles
through the context of data science (similar to how Scratch is
meant to learn programming, rather than to learn game design).

C. Academic Motivation and Blocks

The prior research on block-based environments in un-
dergraduate settings sheds some light on the limitations of
environments for those populations. Mishra conducted a two-
week intervention in an introductory course where students
worked with Scratch before they began working with Java, re-
porting positive outcomes in both learning and engagement [5].
However, although the sample population was large (N=450),
the students do not represent the typical body of a university:



Fig. 1. A complete representation of BlockPy (http://think.cs.vt.edu/blockpy/ )

they were engineering majors, 88% male, and “highest ranked”
in “mathematics, physics, and chemistry”. The students did
vary greatly on prior programming performance, but their other
demographics suggest that they have uniform motivational
concerns, compared to the general undergraduate population.
In particular, many students cited the game design context
afforded by Scratch as a major motivating factor: “[I am]
thrilled to be able to code complex games” and “[coding]
games helped increase my interest, [...], there was lot of room
for experimentation.” These students valued the game design
component because it was interesting to them, but not because
they saw it as useful to their careers. It is unclear how more
diverse students would react to this environment.

In our research project, we use the MUSIC Model of
Academic Motivation [6] to explain the different ways stu-
dents become engaged. Specifically, this model differentiates
between five components of motivation: eMpowerment, the
control that a student feels that they have over their learn-
ing experience; Usefulness, the student’s expectation that the
material will be valuable to their short- and long-term goals;
Success, the student’s self-efficacy; Interest, the situational
and dispostional value the student’s feels; and Caring, the
student’s perception of their professor’s and classmates’ at-
titudes toward them. We apply this theory to describe existing
game-based programming environments as providing Interest
to certain populations, but limited opportunities for Usefulness.
We suggest that more students can be better served with a
context that supports all five dimensions and, in particular,
both Interest and Usefulness. To that end, we have created a
new block-based environment with this in mind.

II. BLOCKPY

In this section, we concretely describe our work on a new
web-based, dual text/block environment: BlockPy, a beginner-

friendly programming environment that scaffolds the learner
into a more mature environment while supporting a sense
of Usefulness up-front. Internally, BlockPy uses a modified
version of the open-source Blockly library to provide a block
editor, a modified version of the open-source Skulpt library to
execute Python code client-side, and an unmodified version of
the open-source CodeMirror library to provide a text editor.
Figure 1 demonstrates the interface: the problem presentation
and feedback on the top-left, the dual program representations
in the bottom left (via Mutual Language Translation), and the
data science dashboard on the right (giving students powerful
insight into their programs execution).

A. Data Science as a First-Class Feature

The code represented in the figure demonstrates the data
science API exposed to the student, including blocks and func-
tions to access real-world data sources and to create visualiza-
tions. These data sources include weather forecasts, earthquake
reports, and stock feeds. Data returned from their interface is
extremely simple – usually either primitive (numbers and text)
or minimally structured (maps and lists), ensuring that students
can begin working with Big Data blocks at the earliest possible
points in the course. In addition to obtaining data, we support
the popular MatPlotlib library to provide a set of visualization
functions create simple line plots and histograms. By basing
everything around the MatPlotLib API and relying on the
Blocks interface for scaffolding, BlockPy seeks to maintain
complete compatibility with conventional Python APIs so that
all code written is authentic, as opposed to the use of simplified
toy APIs in environments like CodeSkulptor.

B. Guided Practice

BlockPy is not just a code-authoring environment but also a
system for guided practice. Instructors can create problems by



writing introductory text and then using an assessment API to
define interactive feedback. Specifically, the instructor can de-
fine rules based on students’ current code, output, and program
state, and gives automatic feedback to the student. This just-in-
time feedback is meant to guide students to success. Of course,
the environment also supports free-form coding experiences,
as you would find in traditional programming environments;
as the students progress through their introductory experience,
short-term feedback can decrease and then fade away.

C. Transfer to Textual Languages

Although some research is working towards creating end-
user block-based environments, we view block-based lan-
guages as “Training Wheels”, meant to be faded away. Work
by Weintrop on the transition from Snap to Python analyzes
this transition and offers a number of ways to mediate the
transfer through programming tools. One of the largest find-
ings is that being able to write inline code inside a Block-
based language is extremely helpful to students’ learning [7].
Another approach we support is Mutual Language Translation,
devised by Matsuzawa [8], that creates an isomorphic view
of students’ code as both text and blocks. These features are
meant to transfer students away from blocks towards text.

D. An Example Scenario

Consider a lesson for students on Iteration. The instructor
could create a problem asking students to find the average
temperature in their local city for this week, using the as-
sessment API to construct rules demanding they use iteration
blocks. Students would drag in a Get Temperatures for
[city] block. If they attempt to run their code, they will be
reminded that averaging requires iteration. As they continue,
they switch between the block and text view as they feel
comfortable. They also use the data explorer to step through
their code and watch its state change. Finally, when they
successfully print the answer, they are given positive feedback.

III. RESEARCH QUESTIONS

Our new programming environment offers a number of
affordances to educators, but much of its promise is still
unproven. Beyond just usability testing, we wish to explore
questions relating to the nature of using data science in a block
environment. One of the major values of a context is being
relatable – it should be a metaphor for students, helping to
build on their prior knowledge. Will the entire undergraduate
population find data science to be sufficiently relatable? For
instance, some students may possess weak math skills or
have low self-efficacy with math. Will they find the necessary
mathematics (e.g., finding the average of a list) too confusing?

Along similar lines, how do we quickly introduce students
to a given dataset, and make them comfortable manipulating
and understanding the data it contains? What interaction can
the students have with the blocks in order to aid this experi-
ence? In the datasets currently supported by the environment,
some are “easier” than the others: our students had no trouble
working with weather data, for instance, but struggled when
confronted by stock trading data. Are some datasets inherently
more suitable for introductory experiences? And just how
crucial are students’ perceptions of interest and usefulness?

Of course, our environments’ affordances also raise ques-
tions. In our experiences with using a block-based environment
to scaffold learners into a conventional environment, the trans-
fer can be rocky. Some students are eager to start using the text-
based environment and do not need to pushed to move away
from the blocks. However, some students may be wary about
losing their training wheels and, if left to their own devices,
may choose to delay trying out the text-based code. How do
we gracefully transition students to coding text, based on the
students’ abilities, motivation, and the course’s time table?
How does Mutual Language Translation support and hinder
this process? And how do we provide accurate block-based
representations of a dynamic language like Python – consider
the difficulties involved in inferring whether a variable block
has the appropriate type to be connected to another block.

IV. CONCLUSIONS

In this paper, we have introduced our new environment,
“BlockPy”, that promotes Data Science through a block-based
interface. We make a case that by relying on a more generally
Useful context, rather than Interest, we can appeal to a wider
range of mature learners. We describe a number of features we
seek to support in our environment. Finally, we discussed the
research that we are now exploring through this environment.

V. ACKNOWLEDGEMENTS

This material is based upon work supported by The
National Science Foundation, grant TUES-1140318 and The
National Science Foundation Graduate Research Fellowship,
Grant No. DGE 0822220

REFERENCES

[1] R. E. Anderson, M. D. Ernst, R. Ordóñez, P. Pham, and S. A. Wolfman,
“Introductory programming meets the real world: using real problems
and data in CS1,” in Proceedings of the 45th ACM technical symposium
on Computer science education. ACM, 2014, pp. 465–466.

[2] D. G. Sullivan, “A data-centric introduction to computer science for
non-majors,” in Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, ser. SIGCSE ’13. New York, NY, USA:
ACM, 2013, pp. 71–76.

[3] L. Layman, L. Williams, and K. Slaten, “Note to self: Make assignments
meaningful,” in Proceedings of the 38th SIGCSE Technical Symposium
on Computer Science Education, ser. SIGCSE ’07. New York, NY,
USA: ACM, 2007, pp. 459–463.

[4] M. Goldweber, J. Barr, T. Clear, R. Davoli, S. Mann, E. Patitsas, and
S. Portnoff, “A framework for enhancing the social good in computing
education: A values approach,” ACM Inroads, vol. 4, no. 1, 2013.

[5] S. Mishra, S. Balan, S. Iyer, and S. Murthy, “Effect of a 2-week
scratch intervention in CS1 on learners with varying prior knowledge,”
in Proceedings of the 2014 Conference on Innovation & Technology in
Computer Science Education, ser. ITiCSE ’14. New York, NY, USA:
ACM, 2014, pp. 45–50.

[6] B. D. Jones, “Motivating students to engage in learning: The MUSIC
model of academic motivation,” International Journal of Teaching and
Learning in Higher Education, vol. 21, no. 2, pp. 272–285, 2009.

[7] D. Weintrop, “Minding the gap between blocks-based and text-based
programming (abstract only),” in Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’15. New
York, NY, USA: ACM, 2015, pp. 720–720.

[8] Y. Matsuzawa, T. Ohata, M. Sugiura, and S. Sakai, “Language migration
in non-CS introductory programming through mutual language transla-
tion environment,” in Proceedings of the 46th ACM Technical Symposium
on Computer Science Education, ser. SIGCSE ’15. New York, NY, USA:
ACM, 2015, pp. 185–190.


