PythonSneks: An Open-Source, Instructionally-Designed
Introductory Curriculum with Action-Design Research

Austin Cory Bart
University of Delaware
Newark, DE
acbart@udel.edu

Michael Friend
Virginia Tech
Blacksburg, VA
mrf7@vt.edu

ABSTRACT

Rising enrollments and limited instructor resources underscores
the growing need for reusable, scalable curriculum. In this paper,
we describe an open-source introductory Python course for non-
Computer Science majors in STEM, designed following best prac-
tices of Instructional Design (a process similar to Software Engi-
neering). The created resources include 234 learning objectives, 51
lesson videos, 45 lecture slides, 170 programming problems, 281 quiz
questions, 6 unit tested projects, and 4 ethical prompts. A teaching
field guide has also been produced as a result of this effort, docu-
menting how to deploy this curriculum on a daily level. We describe
our experiences deploying over two semesters. The course serviced
over 500 students, with 100s in some sections. Along the way, two
interventions were conducted in an Action Design Research style:
one using Worked Examples, and another using Structured Small
Groups. We report on the mixed results of these experiments, plus
evaluations of the assignments from student surveys and statistical
measures of item effectiveness. Finally, we describe lessons learned
when following Instructional Design processes.

CCS CONCEPTS

« Social and professional topics — Computing education;
Model curricula; CS1;

KEYWORDS

Python; Instructional Design; Open Curriculum

ACM Reference Format:

Austin Cory Bart, Allie Sarver, Michael Friend, and Larry Cox IL 2019.
PythonSneks: An Open-Source, Instructionally-Designed Introductory Cur-
riculum with Action-Design Research. In Proceedings of Proceedings of the
50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19).
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3287324.3287428

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5890-3/19/02...$15.00
https://doi.org/10.1145/3287324.3287428

Allie Sarver
Virginia Tech
Blacksburg, VA
afsarver@vt.edu

Larry Cox II
Virginia Tech
Blacksburg, VA
lacox@vt.edu

1 INTRODUCTION

Ever rising enrollments are bringing more students to computing
courses, requiring more instructors and scalable curriculum. Fre-
quently, these busy instructors are forced to reinvent much of their
curriculum from scratch even as they gather materials from dis-
parate external sources. The limited time and resources available
leads to a lack of systematic processes in curriculum development,
which can cause a wide range of issues: instructors focusing on
lesson plans without reference to established assessments, course
staff becoming out-of-sync on learning objectives, and untested
assignments with errors and typos. The end result is overworked
instructors struggling to make do with inadequate curriculum.

Curriculum Sharing is one mechanism that can reduce the bur-
den on instructors. Open-sourced curriculum developed by other
instructors can be adopted and improved. However, the authors
have found few modern introductory computing curricula that
follow best practices of Instructional Design: systematic construc-
tion of a curriculum, with parallels to Software Engineering. Most
resources available are only parts of a full curriculum, not easily
modified, and not tuned to a conventional undergraduate setting.

Working with an Instructional Designer, we created an introduc-
tory Python curriculum (PythonSneks) to fill this gap. Our vision is
of an introductory curriculum that is easily adopted by instructors
but inherently open and modifiable. The material is targeted at
undergraduate non-computing majors with a range of prior expe-
riences in a typical undergraduate setting, but suitable for other
contexts. The course incorporates many modern pedagogical meth-
ods to reach large (100+) audiences: flipped-classroom lessons, peer
instruction, active learning, and activities with immediate feedback.
When deploying our course in the past year, the developers col-
lected a large amount of data for course evaluation and answering
research questions using an Action Research approach. We summa-
rize the results of the above in the hopes that other adopters will
use the materials to refine their own courses. Ultimately, this paper
makes the following contributions:

e Description of the development, deployment, and evaluation
of an open-source Python curriculum (available publicly at
https://acbart.github.io/python-sneks/).

o Results from two experimental interventions on the courses’
second offering, on Worked Examples and Structured Groups.

e Lessons for other curricula that seek to be open-source.

https://doi.org/10.1145/3287324.3287428
https://doi.org/10.1145/3287324.3287428
https://acbart.github.io/python-sneks/

2 EXISTING CURRICULUM

As the most popular introductory language for university under-
graduate courses [9], there are a large number of existing intro-
ductory Python curricula. Prior to developing our curriculum, we
surveyed a number of courses from the literature and explicitly
sought out more via a post on the SIGCSE-Members mailing list [2].
In this section, we review a subset of our findings, and discuss
why we think our approach is a useful addition to the field. A com-
plete listing of alternative curricula that we found is available at
https://acbart.github.io/python-sneks/alternatives.

A recurring problem we found in reviewing courses is the limited
accessibility of materials. For instance, [17] describes a curriculum,
but provides no way to access materials. Although most instructors
are willing to share when prompted, the social barrier of reaching
out is often associated with unpackaged materials. Of course, there
are projects that have published their materials. Chor & Hod de-
scribe a largely lecture-based curriculum (CS1001.py) focused on a
wide range of Computer Science oriented topics (hashing, fibonacci,
sorting, etc.) [6], representative of many similar approaches from
the last few decades. Although suitable for students already inter-
ested in Computer Science, it is unclear how well such topics would
appeal to broader, non-major audiences. Further, as we will describe,
few such curricula follow principles of Instructional Design.

In response to the more abstract Computer Science courses, a
number of courses have been created with a contextualized ap-
proach. Guzdial popularized a Python curriculum based on Media
Computation in the early 2000s that saw wide-spread adoption [11].
This curriculum attempted to appeal to students’ sense of interest
in media and animation manipulation. Unfortunately, much of the
curriculum’s dependent technology seems to have stagnated [12].
Kafura et al describes an introductory Computational Thinking
curriculum for non-majors based around Data Science [15], an ar-
guably more authentic and useful context. However, because it was
designed to be accessible for a wide audience, its learning objec-
tives are targeted at a lowest common denominator of students and
covers a limited set of topics.

Joyner’s open MOOC-based curriculum is perhaps closest in our
vision to an open introductory curriculum [14], and should be seen
as a comparable project. Joyner’s work is still being refined and
disseminated, but preliminary reviews suggest there are many fine-
grained differences in the approaches (e.g., different styles of mate-
rial presentation, different content delivery platforms). For now, the
course seems to be more biased towards its MOOC roots, without
as much emphasis on the in-classroom perspective. Our hope is
to design a curriculum that can be easily adaptable to instructors
in traditional university settings. Another similarly high-quality
open curriculum is the Exploring Computer Science program [8].
Although their materials are extremely well designed and articu-
lated (including both assessments and learning objectives alongside
their teaching field guide), the expected audience is primary and
secondary schools. A number of companies and private entities
have published free online curriculum for learning Python (e.g.,
CodeCademy, Coursera), but the materials are rarely open-source
and are not tuned for university settings either. Evaluations of these
curriculum are internal and not publicized.

There have been a number of papers that describe parts of cur-
ricula, projects, and assignments. There are even repositories (e.g.,
EngageCSEdu [19] and Ensemble [5]) of such materials. While
many of these can become invaluable components of highly effec-
tive courses, it is critical to understand that, from an Instructional
Design perspective, these are only pieces of a curriculum, whether
they be interactive textbooks (e.g., [18]), lecture slides, or collections
of auto-graded programming problems (e.g., CodingBat [22]). We
argue that a curriculum is the sum of a large number of course arti-
facts that are designed to provide a series of learning experiences
to learners, mediated into concrete course offerings by instructors.
It is this sum of pieces that we seek to develop, disseminate, and
evaluate in this publication, not individual components or ideas.

3 CONSTRUCTING A NEW CURRICULUM

After reviewing the above curricula, we chose to move forward
with developing our own course. We do not claim that any par-
ticular element of our courses’ design is ground-breaking. This is
intentional — we seek to incorporate best practices and existing
material. Instead, the major distinction of our curriculum from the
prior work is the intersection of 3 principles:

(1) Materials should be documented and created in such a way
that they can be shared externally in an editable way:.

(2) Modern pedagogical techniques should be used to teach
modern topics supported by modern technology.

(3) The course must scale to hundreds of students while still
fitting within the conventional university course model.

3.1 Instructional Design

To satisfy our first principle, the lead course designer worked with
an instructional designer and followed a formal Instructional De-
sign model based on Dick & Carey [7]. Instructional Design is a
systematic process akin to Software Engineering [3] that aligns
learning outcomes, assessments, and instruction while simultane-
ously encouraging documentation and evaluation along the way.

We began with topics drawn from various sources, including
syntactical features (e.g., how to write for loops), software engi-
neering strategies (e.g., writing unit tests), computational theory
(e.g., runtime complexity), and high-level critical thinking (e.g., solv-
ing open-ended problems). We oriented our topics around language
features as an organizational aid: Figure 1 visualizes their order,
divided into two strands of Data and Algorithms (branching off of
Program Fundamentals). From the topics, 234 subordinate learning
objectives were detailed and grouped, all descended from the fol-
lowing terminal learning objective: "Create simple Python programs
that solve problems."

Parallel to the development of learning objectives, we conducted
an analysis of the learners so we could establish appropriate criteria:
student demographics and instructor interviews led to a determina-
tion of expected student prior skills and motivations. Informed by
these analyses, we then transformed each subordinate learning ob-
jective into one or more assessment questions. Finally, instructional
materials were prepared based directly on the objectives and as-
sessments. These materials incorporated a mixture of presentation
(asynchronous video lessons and synchronous lecture slides) and
practice opportunities (programming problems, quiz and clicker

https://acbart.github.io/python-sneks/alternatives

Data

Strings
Primitive /

/4 File Formats

/-. Types Files
Composite Types
Values K p e /’ Classes
/ \ Lists Dictionaries Tuples
Program Variables N List _
Fundamentals l Comprehension
U | Expressions : Methods
A t —
E ssignmen Relul Control Structures \ Definitions
c Arithmetic] T IF
. . FOR Loops A
-+ - Function Function Statements
e Conditional — Statements — o — Modules
—) Calls Definitions
@) Operations l WHILE
30 String Methods Lo e
< Operations Calls

Figure 1: An Overview of the Sneks Curriculum, from a topics perspective

234 | Learning objectives
281 | Quiz Questions
170 | Programming problems
51 | Video lessons
45 | Annotated Lecture Slides
6 | Projects
4 | Essay-based Ethics Assignments
2 | Final Assessments
1 | Teacher’s Guidebook

Figure 2: Quantity of Curricular Resources

questions, essays, and projects). Along the way, we documented
our instructional strategies into a Teacher’s Guidebook (publicly
available at https://acbart.github.io/python-sneks/). Figure 2 breaks
down the complete set of created resources.

3.2 Pedagogy and Materials

In this section, we detail the pedagogy selected to deliver the course
content. The Sneks curriculum is not meant to be revolutionary
or experimental, it is meant to be well-engineered and clearly ar-
ticulated. To that end, and in satisfaction of our second principle,
most of the courses’ pedagogy was selected based on best practices
from the literature. Per our third principle, course materials were
designed to fit into the framework of a typical undergraduate uni-
versity course. For our purposes, this means a 14-week semester
where students meet in-person for lecture and have access to a
modern online learning management system (i.e., Canvas). How-
ever, we also wish to handle large classes of hundreds of students,
so many decisions were motivated by scalability concerns.

To handle the large class sizes, a team of (largely undergradu-
ate) teaching assistants supports the instructors by attending class,
with a 30:1 student-to-staff ratio. The instructional staff met weekly
to preview upcoming lessons, review previous assignments, co-
ordinate grading, and receive pedagogical training. The training
material was based off the curriculum by Tychonievich [27]; our
strategies for deploying it are included in the Teacher’s Guidebook.

The majority of the course content is delivered in a Flipped Class-
room style [4, 13] via 51 asynchronous video lessons. Based on the
guidelines of [10], each video was designed to be short (around
2-4 minutes) and concisely teach a small set of learning objectives.
Each video has PDFs, narration, captions, and transcripts available.
Lectures slides were also created, but are brief: the in-class lecture
component lasts less than 20 minutes. Little didactic instruction
is used during this time, instead focusing on Peer Instruction ac-
tivities [23], live coding demos, and other active learning lecture
strategies [24]. The majority of class time is instead dedicated to
students completing assignments with help from the course staff.

Each video lesson is associated with a short quiz (averaging
about 5 questions) of multiple choice, fill-in-the-blank, and other
automatically graded conceptual questions. These quizzes are meant
to be delivered in a mastery learning style, with students having
repeated opportunities to complete them. Most lessons also have
3-4 programming problems associated with them. Like the quizzes,
the programming assignments are automatically graded and paired
with immediate feedback to scaffold the learners. These problems
are small exercises, typically requiring less than 10 lines of code.

Lessons are organized into modules, and each module pair is
capped with a project. Lessons align with the subordinate learning
objectives, in the same way that the modules align with the major
topics. The nature of the projects vary in topic, scope, and context.
However, each attempts to incorporate opportunities for student

https://acbart.github.io/python-sneks/

agency and creativity, amusing stories, or other motivational ele-
ments.

(1) Turtle Art (Function calls): Use functions from the Turtle
module to create a piece of art of their own design.

(2) Magical Banking (Function definitions and data passing):
Integrate a black-box function and code a sequence of simple
functions to make a banking application for wizards.

(3) Survey Statistics (For Loops and Lists): Develop a survey
question for an alien overlord, gather responses, and analyze
the data using simple iteration patterns.

(4) Text Adventure (While Loops and Dictionaries): Plan and cre-
ate an interactive text-based adventure game with mutable,
structured state based on a simple game framework.

(5) Data Science (Data Processing and Visualization): Analyze a
self-selected dataset to generate visualizations and perform
open-ended statistical explorations.

(6) Canvas Analyzer (Summative of all course topics): Use the
Canvas LMS API to retrieve and analyze mock student data
and the learner’s actual course data.

Interweaved between the modules are 4 essays oriented around
ethical dilemmas in computing. These essays are ordered to situate
the students first as consumers of technology and then as producers
of technology. Student responses are meant to be brief and are
graded with an established rubric. For each prompt, students must
1) summarize a provided situation incorporating an ethical dilemma,
2) take a clear stance, 3) write a coherent argument supporting their
stance, 4) reference a relevant ethical theory or guideline, and 5)
write with understandable spelling, grammar, and punctuation.

The course is capped with a final exam based directly on the
quizzes and programming questions. This exam is administered
using the same platform as the other questions, and graded auto-
matically. TA proctors are physically present to prevent cheating.

3.3 External Adoption

External adoption is a primary goal of the PythonSneks curriculum.
The courses’ components (and their source) are available through
GitHub, while the course itself is available on the Canvas learning
management system. Two audiences are in mind for these resources:
power users who want a la carte access, and casual adopters who
want to use the curriculum without modification. We encourage
both cases, but request that adopters report their experiences (either
informally or formally) using the GitHub Issue tracker and by filling
out the Experience Report forms available in the repository.

Very little space in this paper is dedicated to the technology used
in the course. Although our Teacher’s Guide covers a number of op-
tions and our own reasoning for using various tools and platforms,
our goal is to decouple the curriculum from the tools. The justifi-
cation for this is that tools are transient: for example, the desktop
programming environment used by students to complete projects
(Spyder) is in the process of being retired — future semesters plan to
use the educational Thonny environment, but there are a number
of other viable options (PyCharm, Wing, etc.). To this end, many of
the assignments and resources are being modified to be compliant
with emerging standards developed for the CSSPlice project ! to
encourage adoption without respect to a particular tool.

!https://cssplice.github.io/

Project | Easy | Interest | Useful
Turtle Art 3 3 2
Magical Banking 2 3 3
Survey Statistics 2 3 3
Text Adventure 1 4 3
Data Science 3 3 4
Canvas Analyzer | 1 3 3

Figure 3: Student Responses about Projects’ Attributes

4 DEPLOYMENT AND EVALUATION

A critical element of the Sneks curriculum is pre-planned evalu-
ation of the materials after its deployments. Evaluation is an im-
portant phase of any Instructional Design process, and critical to
improvement. We present quantitative metrics of the quiz ques-
tions and programming problems, along with subjective student
survey responses about the overall course components. In addition
to the evaluation of the curriculum, we also conducted two quasi-
experimental interventions. Issues with the course were identified
in the fall as baseline data was collected. Several issues were par-
ticularly targeted in the Spring with interventions. In both cases,
we attempted to apply emerging theories from the Computing Edu-
cation literature that we hoped would overcome the issues. Each
intervention was led by an undergraduate research assistant.

4.1 Evaluations

So far, the PythonSneks curriculum has been offered in Fall 2017 (281
students) and in Spring 2018 (240 students). Roughly 34% of students
were female, and roughly 84% had some kind of prior programming
experience (high school, another course at community college, etc.).
The DFW (Ds, Fs, and Withdraws) rate was 7.1% in the fall and
7.3% in the spring. In this section, we offer some of the preliminary
evaluations conducted of these offerings. The evaluations given
here are not meant to be summative or definitive, but demonstrate
the range of ways that the course can be measured.

Data was collected through both the LMS’ grade systems, the
coding platforms logging systems, and from surveys. These sur-
veys were administered every other module to both students and
teaching assistants. Student surveys asked questions about which
learning resources were particularly helpful to their learning, their
habits with regards to the video lessons, overall course motiva-
tion, and their suggestions for improvements to the modules they
just completed. TA surveys asked questions about particular stu-
dent misconceptions, useful teaching strategies, and suggestions
for revising the most recent modules.

Figure 3 gives a summary of student responses to survey ques-
tions about the six course projects. For each project, students chose
from 5-point likert style questions (e.g., “Very hard”, “Somewhat
hard”, “Neither hard nor easy”, “Somewhat easy”, “Very easy” map
to 0-4). The number shown is the median numeric response to each
question, with the final column as a cumulative score for the project.
Most projects were at least somewhat interesting to students, but
they ranged in difficulty and usefulness. From a revision viewpoint,
the final project’s difficulty may be appropriate, but it would be

Difficulty of Quiz Questions on First Attempt

B0 A '
i
5 a0
2
Z 20 1
D R
Wery Difficult Moderate Easy Very
Difficult Easy
Discrimination of Quiz Questions for Entire Quiz
i i i
w @] i
E 40 :
B !
& 201 |
1
D A
Wery Okay Very Okay Very
Low Good Low

Figure 4: Summary of Quiz Questions

ideal if the project’s interest or usefulness were higher to balance
this out (as the Text Adventure accomplishes).

Figure 4 are histograms of the quiz questions’ difficulty and dis-
crimination. In this case, difficulty was measured as the proportion
of students who gave a correct answer on their first attempt at
a question; the X-axis has been labeled with an interpretation of
these numbers. Discrimination is given as the Pearson correlation
of each students’ score with their overall quiz score, indicating how
well this particular question predicts the quiz. Using these metrics,
individual questions can be assessed for their fit. The distribution of
question difficulty does suggest that most questions skew towards
being easier, but that they tend to discriminate fairly well.

Figure 5 gives a time-oriented view of programming problem
completion rate. The vertical lines indicate the start of a new module,
while the blue line is the percentage of students who have completed
a given problem. Although completion rates trend well over most
of the course, they nosedive when the assignments overlap with
the final project, possibly indicating a need to bifurcate the start of
the project from the remainder of the assignments.

Upon finishing the second deployment of the Sneks curriculum,
a total of 41 major redesign considerations were identified. These
considerations have been divided into low (16), medium (21), and
high (4) priority issues, and into categories such as organizational
issues (“TAs sometimes were unprepared: allocate time for TAs to
try assignments as part of their job responsibilities”), topical issues
(“String traversal is explained better in lecture than in the video lessons,
so relevant content should be moved.”), and lingering student mis-
conceptions (“Students believe that variables passed into a function
call must have the same name as the formal parameters”).

4.2 Action Design Research

The next two sections describe interventions staged during the
second offering of the course. Educational research is frequently
confounded by the rapidly changing target space and variability
between semesters, frustrating efforts to control populations for
experimental validity. We share the beliefs suggested by Nelson and
Ko [21], that the quest for unarguably valid experimental results

100
w
oh I,
S]
! W Phin A
T \Luu‘lj\-w'\p
&
07 E
o |
=8
E 401 k
=]
]
T T T T T T T T T T
) & & & B
Q__OQ& ‘?P & B gt\\ .,|¢-<L} é-k c}'b"b .%‘écgl éﬁocl
& 4 &% P F &S P
S R A)
S-S S e Rt g -
o Wy S W T
L] =% ot -3\ q\l" 6@ qJ .;,.;\ %= q_\
RSO P W o>
: &] ’
R &
ok
-q;"

Figure 5: Completion of Programming Problems over Time

is a detriment to progress in perfecting designs within computing
education. The Sneks curriculum is ultimately a design artifact, and
so frequently decisions were made that could affect the sanctity of
our experiments. We allowed modifications in a systematic way
that would contribute to the research space, while acknowledging
the dynamic nature of educational settings. Therefore, we approach
our modifications from a Action Design Research (ADR) perspec-
tive [26]. When ADR is used in an educational setting, the result is
similar to Instructional Design: an iterative cycle of identifying prob-
lems in existing curricula, implementing changes, and observing
the impact. Therefore, the interventions presented in this section
should be taken with the caveat that the studies are static-group
comparison designs, and understood for their limitations.

4.3 Worked Examples Intervention

Problem: Students struggle with difficult programming problems.

Theory: Worked Examples are examples of similar problems,
consisting of a “problem formulation, solution steps, and the fi-
nal answer itself” [25]. Prior work suggests providing Worked
Examples with clear subgoal labels could help students deconstruct
problems and improve performance [16, 20].

Hypothesis: Providing high quality Worked Examples could
help students complete more problems faster and with less stress.

Research Questions:

(1) Do students take advantage of Worked Examples?
(2) Do Worked Examples improve performance?
(3) Do students find Worked Examples helpful?

Intervention: In the second course offering, 8 problems were
selected as the hardest (based on the metric that it took students
longer than average). Worked Examples were created for each
problem and made available to students in the problem prompt.

Data Collection: Quantitative Data was collected via exercise
completion rates and student interaction in the coding platform.
Qualitative Data was collected via a survey on student opinion and
usage of Worked Examples.

Results: Usage of the Worked Examples varied between prob-
lems, but roughly 42% of students took advantage of them. Surpris-
ingly, students who took advantage of Worked Examples complete
problems at roughly the same rate as those who did not. Students
who used WEs actually took significantly more time to complete
problems; focusing on students with no prior experience, we see
those that used the WE actually took over twice the time as those
who did not. However, almost 64% of students found the WEs to be
helpful to their learning, with only 18% explicitly disagreeing.

Conclusion: The Worked Examples seemed to have minimal
effect on the completion rate of problems, and possibly even nega-
tively affected students by slowing them down, even though many
students used them and found them helpful.

Limitations: First, all problems had high completion rates (80-
90%) even before introducing Worked Examples. Second, the non-
random assignment of students in the treatment could hide a more
positive effect size. Third, it is possible that our WEs were more
like tutorials than WEs.

4.4 Structured Groups Intervention

Problem: Students report that they do not feel prepared to begin
a large-scale project

Theory: Micro-classes group students within a large lecture hall,
previously shown to foster community [1].

Hypothesis: If students are given structure to form groups natu-
rally, the enhanced community will contribute to their preparedness

Research Questions:

(1) Do groups increase students’ sense of community?
(2) Is students’ sense of community associated with their pre-
paredness to begin a complex project?

Intervention: On the first class period after Project 2 began, the
class was divided into 8 sections, each managed by a TA. Within
each section, students were encouraged to organically form small
groups. Students then worked together to answer questions about
the upcoming project. Afterwards, students were prompted to begin
working on the project together, with an emphasis on using student
community to solve any problems they may come upon.

Data Collection: After two classes of project work, students
took a Likert-style survey to assess their readiness to begin the
project, their sense of classroom community, and if their sense of
community was helpful in solving problems. This same survey was
administered after the final project in the previous semester

Results: As shown in Figure 6, students reported a significantly
(as evaluated by a Mann-Whitney U test) increased sense of com-
munity relative to the prior semester, but did not feel significantly
more prepared to begin the project. There was a significant but
moderate Spearman Rank Correlation of .41 between these metrics.

Conclusions: Although working with others did make a major-
ity of students feel more prepared to start the project, the increased
sense of community did not seem to help students feel more pre-
pared to start their project.

Limitations: Data was never collected directly on whether
students struggled to get started with each project, and the sur-
veys were administered between different semesters for different
projects. Finally, A possible limitation of student-selected peer

| had the opportunity to work with others (peers and TAs) to enhance my learning.
T

Baseline l _
Treatment I _

-50% -25% 0% 25% 50% 75% 100%
Working with others during class helped me feel more prepared to start my project.
T

1
-50% -25% 0% 25% 50% 75% 100%

'
1
1
1

Figure 6: Students’ Perceptions of Structured Groups

groups is that novices working with novices may not feel that they
have any new information, and will still need additional assistance.

5 RECOMMENDATIONS

In this section, we describe lessons learned when developing.

1) Follow Instructional Design processes: Not only does ID
provide a clear, systematic process to guide novice course develop-
ers, but it encourages high quality material that is well-aligned.

2) Design for privacy: As course resources are developed, con-
sider how you will maintain question answer security and anonymize
data for potential research publications and future course analysis.
Once released, data can be difficult to remove from records.

3) Consider evaluations: How will you assess your questions
for their quality? How will you know if students enjoyed your
projects? Which resources were most helpful to students? Do not
rely on anecdotal evidence, but collect concrete data.

4) Plan for a lengthy development process: As is frequently
recognized, course development is a lengthy process. Course devel-
opment began the summer before the course’s first offering, and
continued throughout despite full-time commitment from the pri-
mary developer. In the latter portions of the course, projects were
frequently completed shortly before they were deployed.

6 CONCLUSIONS

In this paper, we describe an Instructional-Designed, open-source
curriculum consisting of a large number of formal learning objec-
tives, aligned assessments, and learning material. Although the
Python Sneks curriculum has not been externally validated or sum-
matively evaluated, it is not meant to represent a final version. In
some sense, the curriculum is a straw-man, ready to be knocked
down by more sophisticated curriculum with superior learning
objectives and activities. We hope that our reporting on it will
motivate not only external adoption, but also the creation and dis-
semination of other university-level open-source curricula that
follow formal Instructional Design processes.

ACKNOWLEDGMENTS

The authors would like to thank the Virginia Tech Technology-
enhanced Learning and Online Strategies (TLOS) group for their
support in developing this course.

REFERENCES

(1]

(2]

(6]

[7

(8]
(9]
[10]

(1]
[12]

[13]

[14]

Christine Alvarado, Mia Minnes, and Leo Porter. 2017. Micro-Classes: A Structure
for Improving Student Experience in Large Classes. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education. 21-26.
Austin Cory Bart. 2017. What’s Your Favorite "Introduction to Computing” with
Python Curriculum? (2017). SIGCSE-Members Electronic Mailing List; posted
on 27 Apr 2017.

Austin Cory Bart and Clifford A Shaffer. 2016. Instructional Design is to Teaching
as Software Engineering is to Programming. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. 240-241.

Jennifer Campbell, Diane Horton, Michelle Craig, and Paul Gries. 2014. Evaluating
an Inverted CS1. In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education (SIGCSE ’14).

Lillian Boots Cassel, Ed Fox, Frank Shipman, Peter Brusilovsky, Weiguo Fax,
Dan Garcia, Greg Hislop, Richard Furuta, Lois Delcambre, and Sridhara Potluri.
2010. Ensemble: enriching communities and collections to support education in
computing: poster session. Journal of Computing Sciences in Colleges 25, 6 (2010),
224-226.

Benny Chor and Rani Hod. 2012. CS1001.Py: A Topic-based Introduction to Com-
puter Science. In Proceedings of the 17th ACM Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE '12). 215-220.

Walter Dick, Lou Carey, and James O Carey. 2005. The systematic design of
instruction. (2005).

Joanna Goode, Gail Chapman, and Jane Margolis. 2012. Beyond curriculum: the
exploring computer science program. ACM Inroads 3, 2 (2012).

Philip Guo. 2014. Python is now the most popular introductory teaching language
at top us universities. BLOG@ CACM, July (2014), 47.

Philip J Guo, Juho Kim, and Rob Rubin. 2014. How video production affects
student engagement: an empirical study of MOOC videos. In Proceedings of the
first ACM conference on Learning@ scale conference.

Mark Guzdial. 2003. A media computation course for non-majors. In ACM SIGCSE
Bulletin, Vol. 35. 104-108.

Mark Guzdial. 2016. Where are the Python 3 Libraries for Media
Computation. (2016). https://computinged.wordpress.com/2016/08/19/
where-are-the-python-3-libraries- for-media-computation/

Diane Horton and Michelle Craig. 2015. Drop, Fail, Pass, Continue: Persistence
in CS1 and Beyond in Traditional and Inverted Delivery. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education (SIGCSE ’15).
David A. Joyner. 2017. Congruency, Adaptivity, Modularity, and Personalization:
Four Experiments in Teaching Introduction to Computing. In Proceedings of the

[15

[16

(17]

[19

[20

[21]

[22]

[24

[25

[26

[27

Fourth (2017) ACM Conference on Learning @ Scale (L@S ’17). 307-310.

Dennis Kafura, Austin Cory Bart, and Bushra Chowdhury. 2015. Design and
Preliminary Results From a Computational Thinking Course. In Proceedings of the
2015 ACM Conference on Innovation and Technology in Computer Science Education.
63-68.

Lauren E Margulieux and Richard Catrambone. 2014. Improving problem solving
performance in computer-based learning environments through subgoal labels.
In Proceedings of the first ACM conference on Learning@ scale conference.

Cindy Marling and David Juedes. 2016. CS0 for Computer Science Majors at
Ohio University (SIGCSE ’16). 138-143.

B Miller, D Ranum,] Elkner, P Wentworth, AB Downey, C Meyers, and D Mitchell.
2012. How to think like a computer scientist. Runestone Interactive Project
(http://interactivepython. org/courselib/static/thinkcspy/index. html) (2012).
Alvaro E Monge, Cameron L Fadjo, Beth A Quinn, and Lecia J Barker. 2015.
EngageCSEdu: engaging and retaining CS1 and CS2 students. ACM Inroads 6, 1
(2015), 6-11.

Briana B Morrison, Lauren E Margulieux, and Mark Guzdial. 2015. Subgoals,
context, and worked examples in learning computing problem solving. In Pro-
ceedings of the eleventh annual international conference on international computing
education research.

Greg L. Nelson and Andrew J. Ko. 2018. On Use of Theory in Computing Education
Research. In Proceedings of the 2018 ACM Conference on International Computing
Education Research (ICER ’18).

Nick Parlante. 2015. CodingBat. Com (Retrieved 1/08/2011 from http://codingbat.
com, 2011) (2015).

Leo Porter, Dennis Bouvier, Quintin Cutts, Scott Grissom, Cynthia Lee, Robert
McCartney, Daniel Zingaro, and Beth Simon. 2016. A Multi-institutional Study
of Peer Instruction in Introductory Computing. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education (SIGCSE ’16).

Kate Sanders, Jonas Boustedt, Anna Eckerdal, Robert McCartney, and Carol Zan-
der. 2017. Folk Pedagogy: Nobody Doesn’T Like Active Learning. In Proceedings
of the 2017 ACM Conference on International Computing Education Research (ICER
°17).

Ben Skudder and Andrew Luxton-Reilly. 2014. Worked examples in computer sci-
ence. In Proceedings of the Sixteenth Australasian Computing Education Conference-
Volume 148.

Ernest T Stringer. 2008. Action research in education. Pearson Prentice Hall Upper
Saddle River, NJ.

Luther A. Tychonievich. 2017. Training Course for Teaching Assistants in Com-
puting. (May 2017). https://www.cs.virginia.edu/luther/ta-training

https://computinged.wordpress.com/2016/08/19/where-are-the-python-3-libraries-for-media-computation/
https://computinged.wordpress.com/2016/08/19/where-are-the-python-3-libraries-for-media-computation/
https://www.cs.virginia.edu/luther/ta-training

	Abstract
	1 Introduction
	2 Existing Curriculum
	3 Constructing a New Curriculum
	3.1 Instructional Design
	3.2 Pedagogy and Materials
	3.3 External Adoption

	4 Deployment and Evaluation
	4.1 Evaluations
	4.2 Action Design Research
	4.3 Worked Examples Intervention
	4.4 Structured Groups Intervention

	5 Recommendations
	6 Conclusions
	Acknowledgments
	References

