
Misconception-Driven Feedback:
Results from an Experimental Study

Luke Gusukuma
Department of Computer Science

Virginia Tech
Blacksburg, Virginia
lukesg08@vt.edu

Austin Cory Bart
Department of Computer Science

Virginia Tech
Blacksburg, Virginia

acbart@vt.edu

Dennis Kafura
Department of Computer Science

Virginia Tech
Blacksburg, Virginia
kafura@cs.vt.edu

Jeremy Ernst
School of Education

Virginia Tech
Blacksburg, Virginia

jvernst@vt.edu

ABSTRACT
The feedback given to novice programmers can be substantially
improved by delivering advice focused on learners’ cognitive mis-
conceptions contextualized to the instruction. Building on this idea,
we present Misconception-Driven Feedback (MDF); MDF uses a
cognitive student model and program analysis to detect mistakes
and uncover underlying misconceptions. To evaluate the impact
of MDF on student learning, we performed a quasi-experimental
study of novice programmers that compares conventional run-time
and output check feedback against MDF over three semesters. In-
ferential statistics indicates MDF supports significantly accelerated
acquisition of conceptual knowledge and practical programming
skills. Additionally, we present descriptive analysis from the study
indicating the MDF student model allows for complex analysis of
student mistakes and misconceptions that can suggest improve-
ments to the feedback, the instruction, and to specific students.

CCS CONCEPTS
• Applied computing→ Education; Learning management sys-
tems; • Social andprofessional topics→Computational think-
ing; CS1; Student assessment;

KEYWORDS
CS Education; Immediate Feedback; Student Model; Misconception

ACM Reference Format:
Luke Gusukuma, Austin Cory Bart, Dennis Kafura, and Jeremy Ernst. 2018.
Misconception-Driven Feedback: Results from an Experimental Study. In
Proceedings of 2018 International Computing Education Research Conference
(ICER ’18), Jennifer B. Sartor, Theo D’Hondt, andWolfgang De Meuter (Eds.).
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3230977.3231002

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICER ’18, August 13–15, 2018, Espoo, Finland
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5628-2/18/08. . . $15.00
https://doi.org/10.1145/3230977.3231002

1 INTRODUCTION
Non-computing majors often struggle with introductory program-
ming, because of their limited prior knowledge and low self-efficacy.
These students require quality feedback to guide students to correct
answers [21, 32], maintain student motivation [28], and become
self-regulated learners [22]. While direct feedback from experts
is the “gold standard” [5], it has two pragmatic drawbacks. First,
the availability of experts is limited, especially in larger classes
where the learner-expert ratio is high or in distance-based learning
where an expert is remote. Second, expert feedback may be delayed,
requiring an arranged time for the expert and learner to interact.

In some cases, feedback opportunities can be determined auto-
matically and presented to the learner immediately, such as the
results of unit tests showing how close a learner is to a correct solu-
tion. However, this kind of feedback is centered around a model of
the problem solution rather than a model of the learner, expecting
that simply pointing out a novice’s mistakes will help them infer
the correct knowledge. Although suitable for advanced learners,
such high level of critical thinking may not be available during low
level skill acquisition that occurs in the introductory level.

To improve the impact of immediate feedback on learners we
present Misconception-Driven Feedback (MDF) based on the idea
of a “knowledge component” [1] from cognitive learning theory. In
this model, mistakes detected through program analysis provide
evidence for a set of misconceptions defined by the instructor. With
the misconceptions in mind, feedback messages can be authored
by an instructor to target learners’ misunderstandings.

We conducted a quasi-experiment comparing students’ learning
with the help of conventional feedback vs. MDF feedback; the im-
pact was measured by their summative performance on multiple
choice quizzes and programming problems. This study controls
for the instructors, problems, grading, and learning materials. This
paper reports on the experiment and makes these contributions:

(1) A novel feedback approach based on a learner model con-
necting a learner’s mistakes to underlying misconceptions.

(2) Statistical evidence of the positive impact of misconception-
driven feedback on student learning and performance.

(3) Descriptive analysis identifying the influence of specific mis-
conceptions on programming mistakes.

Session 7: Misconceptions ICER ’18, August 13–15, 2018, Espoo, Finland

160

https://doi.org/10.1145/3230977.3231002
https://doi.org/10.1145/3230977.3231002

2 BACKGROUND
MDF draws on cognitive learning theories, prior work with mis-
conceptions, and general education theories related to feedback.
The technology we have created is related to approaches such as
Intelligent Tutoring Systems and Hint Generation Systems.

2.1 Cognitive Theory
A fundamental aspect of MDF is the idea of modeling a student’s
understanding through knowledge components. A knowledge com-
ponent can be defined as “an acquired unit of cognitive function or
structure that can be inferred from performance on a set of related
tasks” [19]. Guided by this perspective, we define the related ideas
of a (programming) misconception and a (programming) mistake:

• A programming misconception is a unit of cognitive func-
tion or structure that can be inferred from a mistake on a
programming task.

• A programmingmistake is an incorrect configuration of code
elements.

We will often elide the word "programming" and write misconcep-
tion or mistake for simplicity.

2.2 Misconceptions in Programming
There is a body of work on misconceptions that novice program-
mers encounter. A considerable subset of this work is on discovering
existing misconceptions and developing Concept Inventories[7, 15,
20, 27, 29, 31]. The misconception discovery techniques in these
works range from interviews [7, 15, 20] and quizzes [7, 27] to an-
alyzing about mistakes in student code [7, 20, 29, 31]. Our work
specifically uses misconception discovery methods described in
[12]. While there are many techniques for misconception discovery,
there is little work on how to use misconceptions in programming
assignments, especially with regards to detecting them in student
code and delivering appropriate feedback. Some work discusses
systems that can detect misconceptions and deliver appropriate
feedback such as [30], but do not present a formal model.

2.3 Formative Immediate Feedback
Feedback in various forms and styles is a critical element of virtu-
ally all learning theories [32]. Our work focuses on formative feed-
back: “information communicated to the learner that is intended
to modify the learner’s thinking or behavior for the purpose of im-
proving learning” [28]. Different approaches to formative feedback
include verification, explanation, hints, and worked examples[21].
Feedback presentation can be immediate, meaning without explicit
request and/or on-demand (e.g., when a program is executed). Our
vision for creating effective formative feedback, which we term
misconception-driven feedback, is based on two ideas:

• Feedback should be grounded in an understanding of student
misconceptions.

• Feedback should be coupled with instruction.

In this way we can assess and improve feedback in the broader
context of teaching and learning.

2.4 Intelligent Tutoring and Hint Generation
Systems

Intelligent Tutoring Systems for Programming (ITP) are systems
used for learning programming, have pre-scripted programming
problems, and adapt based onmultiplemetrics and an algorithm [10].
These systems have a scaffolded programming learning experience,
and are useful for online settings with unsupervised instruction.
However, ITPs take much effort to assemble [18] and have differ-
ent types of constraints from typical Intelligent Tutoring Systems
(ITS) [10]. ITPs are typically heavily scripted, difficult to adapt to
new contexts, and are meant to be self-contained and divorced from
other instruction. In contrast, our intent is to augment conventional
classroom instruction with more light-weight feedback.

Hint Generation systems give on-demand, logical next steps for
a student to take based on prior students’ programs, thus enabling
student progress while avoiding instructor involvement (achieving
scalability). There are many examples of such systems, typically
able to be integrated into existing programming environments [23],
[24], [25], and [26]. Although useful tools for helping students,
these systems do not aim to help students understand why their
advice and hints should be followed.

The difficulty and effort of developing intelligent tutoring sys-
tems [18], and the weakness of hint generation systems not contex-
tualizing hints with instruction [25], suggests a need for a middle
ground for writing and delivering feedback for students. This mid-
dle ground is still being explored and is relatively underrepresented.
CSF2 cross references results of unit-tests to identify misconcep-
tions within student mistakes based on prior semester data [13].
Mistake Browser and Mistake Propagator [14] incorporate instruc-
tor expertise by having the instructors annotate hints found via
typical hint generation techniques like in [26] and [24]. Instructor-
supervised feedback systems can provide higher quality feedback
than hint generation systems, at a cost lower than intelligent tutor-
ing systems. However, the techniques in [13] and [14] suffer from
the typical slow start problem of data-driven approaches.

3 APPROACH
In this section, we elaborate on the role of misconceptions in our
learner model, the method for detecting mistakes, and feedback
delivery. Key ideas are exemplified in Figure 1 and explained below.

3.1 Learner Model
MDF is centered on a model of breakdowns in the learners’ under-
standing as a set of misconceptions, which can be determined by
the instructors through analysis of the curriculum and prior student
work. In our case, our curriculum was developed in semesters prior
to our experiment. The curriculum was analyzed using selected
elements of a formal Instructional Design process; a description of
the process used to analyze the instruction can be found in [12].

From the Instructional Design process, anticipated misconcep-
tions and associated mistakes were gathered.A general model of
a student was then built from these mistakes and misconceptions.
At the core of the model, a mistake is associated with a vector of
misconceptions. Mistakes are the “observed performance” of the
student. By cross-referencing multiple mistakes, a misconception
can be isolated. An example misconception is shown in Figure 1a.

Session 7: Misconceptions ICER ’18, August 13–15, 2018, Espoo, Finland

161

Learner does not know the difference between a
count and a sum.

(a) Misconception

(b) Mistake 1 Specification

This problem asks for the number of items in the
list not the total of all the values in the list.

(c) MDF Feedback

Figure 1: Example of Feedback Specification

3.2 Detecting Mistakes
To provide feedback without human intervention, mistakes can be
detected automatically using program analysis, unit tests, runtime
violations, and similar tools. In our environment, we use four kinds
of mistake detection. First, conventional runtime and syntax errors
were detected using the existing execution infrastructure. Second,
output checking determined if students met functional correctness.
Third, an abstract interpreter checked certain generic mistakes (e.g.,
def/use errors such as “variables must be defined before they are
read”). Fourth, a large set of patterns were prepared which could be
matched against students’ code. The code patternmatching problem
is a variation on the Ordered Tree Inclusion Problem (adapted to
ASTs) [17]. Where P is an instructor AST and T is a student AST,
we define our Ordered Tree Inclusion variant as follows:

Given labeled partially ordered trees P and T ,
can P be obtained by deleting nodes from T.
Deleting a node u entails removing all edges
incident to u and its descendants.

where a partially ordered tree in our context is defined as:
A rooted tree in which the order of the subtrees
is significant with the exception of nodes that
have commutative properties (e.g. multiplica-
tion and addition) whose subtrees do not have
side effects.

Experts can write patterns declaratively with corresponding
feedback. A total of 88 mistakes were codified into patterns by the
instructors. An example mistake pattern is shown in Figure 1b.

3.3 Feedback Delivery
While students worked on programming exercises in BlockPy [3],
their code was analyzed to detect mistake patterns. When detected,
a relevant feedback message was delivered (either on-demand when
the code was executed or while the student was editing code) using
BlockPy’s built-in feedback mechanisms that are normally used to
deliver runtime and output errors. We chose immediate feedback
delivery because of its acquisitional efficiency for verbal knowl-
edge and procedural skills [2, 6, 9, 11]. In developing the feedback
message, the instructors aimed to explain the misconception found

and the corresponding mistake’s location, rather than how the
student should fix the mistake. Multiple patterns might be found
in the student code; per common practice, we deliver only one
feedback message[4]. Figure 1c shows an example of delivered
Misconception-Driven Feedback. Feedback delivery did not require
modifications to the BlockPy interface.

4 EXPERIMENTAL DESIGN
We hypothesized that Misconception-Driven Feedback would im-
prove student performance on near-transfer tasks, even if MDF was
not provided during programming assessments. We also expected
that students who received MDF while learning would see gains in
their conceptual understanding of the topics. To test these hypothe-
ses, we conducted a quasi-experimental study in an introductory,
undergraduate Computational Thinking course for non-majors.

4.1 Class Description
The study was conducted at Virginia Tech, a large public university
located in a rural area of the eastern United States. At Virginia Tech,
students completing an undergraduate degree in any major must
satisfy a set of “general education” requirements by completing
designated courses in several broad areas of study. For example,
in the area of “quantitative reasoning” students must complete
three courses from an approved list of courses in mathematics,
computer science, logic, or similar subjects. The computational
thinking course in this study is typically used by students in non-
STEM majors to satisfy the quantitative reasoning requirement.

The study collected data over three consecutive semesters. The
baseline data for the control group was collected in the spring
(January-May) term of 2017. Comparative data for the treatment
groups was collected in the fall (August-December) term of 2017 and
the spring term of 2018. Two sections of the course were taught each
semester, each meeting twice a week for 75 minutes. The classroom
environment and the sections’ weekly schedule remained the same,
though the time of day varied. The data was collected under an
IRB-approved protocol.

4.2 Demographics
Tables 1 through 3 show demographic information about the stu-
dents whose data is reported in the study. The enrollment in each
semester for each instructor is shown in Table 1. Enrollment in the
two treatment semesters was limited by the classroom size.

Semester S2017 F2017 S2018 Combined
Instructor 1 47 (13%) 61(17%) 66 (19%) 174 (49%)
Instructor 2 47 (13%) 64 (18%) 67 (19%) 180 (51%)
Total 94 (27%) 125 (36%) 133 (38%) 352 (100%)

Table 1: Enrollment Statistics

Table 2 shows the gender and class of students in the study.
Students in the study were approximately gender balanced. Also,
there were significant numbers of student from each of the four
years of study (Freshman through Senior). It is common in general
education classes to see this diversity among years, because the
class does not serve as a pre-requisite to other courses.

Session 7: Misconceptions ICER ’18, August 13–15, 2018, Espoo, Finland

162

Gender Class

Female: 172 (49%)
Male: 180 (51%)

Freshman: 103 (29%)
Sophomore: 118 (34%)
Junior: 74 (21%)
Senior: 57 (16%)

Table 2: Gender and Class Demographics

Each section in each semester included students from a variety
of majors as summarized in Table 3. University Studies and Gen-
eral Engineering are students who have not yet selected a specific
major. Building Construction was particularly prevalent because
this course is a major requirement. There are 47 other majors that
account for the remaining 138 (39%) students. Students self-select
to enroll in the class; the instructors have no influence over the
students who enroll or in which section.

Major Population
Building Construction 52 (15%)
Criminology 32 (9%)
Psychology 31 (9%)
University Studies 26 (7%)
Fashion Merchandise and Design 21 (6%)
International Studies 14 (4%)
Statistics 14 (4%)
Political Science 14 (4%)
General Engineering 10 (3%)

Table 3: Major Demographics

4.3 Curriculum and Learning Environment
The curriculum, pedagogy, and technology for the computational
thinking course evolved over a period of five (5) semesters and was
stable by the start of the study. Details of the curriculum can be
found at https://think.cs.vt.edu/ct and in [16]. The major techni-
cal topics in the curriculum were data abstraction and algorithms.
Throughout the study, the curriculum’s resources (readings, as-
signments, projects, presentation materials, grading scale, etc.) re-
mained fixed with changes limited to correcting typographical mis-
takes or minor ambiguities. The pedagogy for the course included
both active learning and peer learning. Students were organized by
the instructors into four person teams that persisted throughout
the semester. Groups were formed to maximize diversity of majors
and balance gender within each group. Each class day students
were engaged in solving problems individually, but encouraged to
seek and provide help to others in their group. This group model
was used in all semesters of the study. The technology included a
learning management system (Canvas), an environment for block-
based programming (BlockPy), and a standard Python environment
(Spyder). These systems were used throughout the study and no
significant changes in functionality were introduced.

The course staff consisted of two instructors, one graduate as-
sistant, and ten undergraduate assistants (UTAs). The UTAs had

completed the course in previous semesters and attended each class.
The instructors and GTA were the same throughout the study. The
UTAs varied during the study. A staff meeting was held each week
to provide guidance and coordination for the UTAs. For the control
group the course staff were proactive in providing in-class assis-
tance. In the treatment classes during the period when the feedback
intervention was applied the course staff was reactive, only provid-
ing assistance when explicitly called upon. Anecdotally, there was
a noticeable decline in the support provided by the course staff in
the two treatment semesters. The instruction using the block-based
language covered a two week period (classes 7-10) with another
class (class 12) devoted to a programming project. The topic of
list-based iteration was the focus of classes 8-10. One class (class
13) was a transition from blocks to text.

The feedback intervention was focused on the instruction related
to iteration (classes 8-10) and a project (class 12). This topic was
chosen because it was the first difficult programming concept in
the course, was the focus of a lengthy period of instruction, and in
prior semesters was known by the instructors to be a time where
students struggled, requiring much assistance from the course staff.

4.4 Assessment
The impact of the feedback intervention was measured through
one pre-test and two post-tests (administered electronically). The
pre-test was administered at the end of the class preceding the start
of the iteration unit. The first post-test was administered at the
beginning of class 10. This “embedded” post-test came after two
classes of instruction and was approximately the mid-point of the
instructional unit. The second post-test was administered at the
end of the students’ work in BlockPy (class 12).

A common element in the pre-test and post-tests was a nine
question multiple-choice quiz. The quiz was administered through
the learning management system (Canvas). Each question was pre-
sented one at a time without the option to return to a previous
question. The questions were developed through an instructional
design process. A pair of learning objectives were defined for the
iteration unit. One learning objective was the ability to write a pro-
gram using iteration to compute a quantitative measure from a list
of data. The other learning objective was to write a program using
iteration to produce a visualization from a list of data. Instructional
analysis was used to identify the sub-tasks needed to achieve each
objective. Multiple performance objectives were created for each
task from which the nine multiple choice questions were created.
The distractors on each question came from mistakes identified by
an analysis of student solutions to iteration problems in the prior
semester. Figure 2 shows an example of one of the questions on
the pre-test. In this question students were shown a fragment of
a block-based program containing a list-based iteration and asked
to identify which one of seven alternatives should be placed in the
body of the iteration. The figure also shows the most frequently
selected distractor (item e) and the correct choice (item g).

The same concepts were tested on the pre-test and post-test
quizzes. While the question ordering remained the same, the ques-
tion wording varied. For example, pre-test question 4 shown in
Figure 2 appeared on the first post-test using distance_sum, distance,
and distance_list instead of the text shown (the problem changes

Session 7: Misconceptions ICER ’18, August 13–15, 2018, Espoo, Finland

163

Figure 2: Example Pre-test Question

from one about rents to a problem about distances). However, the
essential nature of the question remained the same.

In addition to the multiple-choice test, each post-test contained
one or two open-ended programming problems. The first post-test
contained one programming problem related to the first learning
objective (computing a quantitative measure). The material related
to the second learning objective (producing a visualization) was not
covered until after the first post-test. The second post-test contained
two programming problems - each related to one of the learning
objectives. The statement of the three programming problems are:

(1) The data block in the BlockPy canvas below provides a list of
the number of students taking the 2015 SAT test in each state.
Write an algorithm to compute and print the total number
of students taking the SAT test in 2015.

(2) The data block in the BlockPy canvas below provides a list
of the per capita income of each state. Write an algorithm
that computes and prints the number of states with a per
capita income greater than 28000 dollars.

(3) The data block in the BlockPy canvas below provides a list of
the sale price in US dollars of books sold by Amazon. Write
an algorithm that produces a histogram of sale prices in
Euros. A dollar amount is converted to a Euro amount by
multiplying the dollar amount by 0.94.

The first problem requires an iteration that counts the number
of elements in the list. The second problem requires an iteration
that counts only some of the elements in the list. The third problem
requires an iteration that produces a new list with transformed
values; this list is then visualized as a histogram.

It is important to note that during the programming of the open-
ended questions, the students were provided limited feedback: only
run-time errors were reported (e.g., adding a number to a list or
using an uninitialized variable). The feedback was limited to assess
the extent that students had internalized the knowledge and ability
to write the program without relying on the feedback for guid-
ance. Each question clearly explained that there would be limited
feedback and no indication of correct output would be given.

Figure 3: Comparison of Score Over Time Between Control
and Treatment

5 RESULTS AND ANALYSIS
In this section, the data from the multiple choice tests and free
response (programming) problems are analyzed. Each of the nine
questions on themultiple choice test is scored as correct or incorrect.
A student’s score is the total number of correct answers given. Each
free response question is also scored as correct or incorrect. Correct
means that the student’s program produced the expected output
exactly; all other programs are incorrect. A Mann-Whitney U test is
used to measure the statistical significance of differences between
the performance of students in the treatment group in comparison
to the performance of students in the control group. The Mann-
Whitney U test is appropriate for this data because the responses
are ordinal and we cannot satisfy an assumption of normality.

The tables presented in this section contain four items:
x : the mean response for the given group
s: the standard deviation from the mean
n: the size of the group
p: the significance
r : the effect size expressed in variance
A p value less than .05 is taken as significant. Modified r for

non-parametric effect size is taken as per normal for variance effect
size (see [8]). Each table also shows four groups: the control group,
the first treatment group (Fall 2017), the second treatment group
(Spring 2018), and the two treatment groups combined (All).

5.1 Multiple Choice Tests
First, we compare the pre-test performance of the treatment groups
to that of the control group. If the performance of the treatment
group is significantly different from that of the control group then
the groups are not directly comparable (e.g., students in one group
might have a higher level of prior programming experience than
students in the other group).

The Pre-test row in Table 4 shows the comparison of the pre-
test performance between the groups. There was no significant
difference between the control group and the combined treatment
groups (All) and no significant difference between the control group
and the first treatment group. However, the null hypothesis is not
rejected for the second treatment group. Therefore, comparisons to
assess the impact of the feedback intervention use the combined
(All) treatment group in comparison to the control group.

Session 7: Misconceptions ICER ’18, August 13–15, 2018, Espoo, Finland

164

The impact of the feedback intervention is shown in the two
Post-test rows of Table 4. The Embedded Post-test data shows
that there is a significant difference between the control group’s
mean performance (x = 5.9067) and the treatment group’s mean
performance (x = 7.1878). On average, the combined treatment
group performed better by the equivalent of one full question on
the test. Statistically, this difference is a large effect size. Recall that
the embedded post-test occurs midway through the instruction.
However, the Final Post-test row in Table 4 shows that there is no
significant difference between the treatment and control groups.
The mean response data (x) is also shown in Figure 3.

Finally, considering each column in Table 4 separately, the gain in
student learning within each group can be seen. The mean response
in all treatment groups shows similar improvement.

Assessment
Control
(x ,n)

Treatment
(x ,n,p,r)

S2017 F2017 S2018 All

Pre-test
x = 4.8806
s = 2.1499
n = 67

x = 5.1982
s 1.9485
n = 111
p = 0.2970
r = 0.0783

x = 5.5536
s = 2.0961
n = 112
p = 0.0396
r = 0.1539

x = 5.3767
s = 2.0272
n = 223
p = 0.0845
r = 0.1013

Embedded
Post-test

x = 5.9067
s = 1.2646
n = 75

x = 7.1500
s = 1.6291
n = 100
p <0.0001
r = 0.4148

x = 7.2212
s = 1.5853
n = 113
p <0.0001
r = 0.4171

x = 7.1878
s = 1.6026
n = 213
p <0.0001
r = 0.3717

Final
Post-Test

x = 7.8611
s = 1.3972
n = 72

x = 7.7300
s = 1.5561
n = 100
p = 0.6443
r = 0.0353

x = 7.7232
s = 1.4900
n = 112
p = 0.4852
r = 0.0516

x = 7.7264
s = 1.5179
n = 212
p = 0.5121
r = 0.0390

Table 4: Student performance onmultiple choice assessment

5.2 Free Response Tests
The free response tests consisted of individual programming prob-
lems as described in Section 4. The Embedded Post-test had one
programming problem and the Final Post-test had two program-
ming problems. As described in Section 4.4 the students were told
that they would receive limited feedback on these problems. The
results of the free response tests are shown in Table 5 and Table 6.

Table 5 shows the analysis of all three programming problems
grouped together (row 1) and the two Final Post-test programming
problems grouped together (row 2). Overall, there was a significant
difference between the control and the combined treatment groups
(All), with a small effect size. This suggests that MDF supports their
acquisition of programming skills. On average, 32% of the control
group completed all three problems correctly versus 41% of the
treatment group. A similar result occurs when considering only the
two Final Post-test questions. In this case 38% of the control group
completed the two programming problems correctly compared to
48% in the combined treatment groups.

Table 6 shows the analysis for each of the three problems sep-
arately. Although similar differences and effect sizes between the

treatment and control groups are reported in Table 6 as in Table 5,
the sample size is not large enough to claim statistical significance.
It can be noted that the effect size is consistent despite the increas-
ing complexity of the problems. The last Post-test problem requires
list construction, list appending, and plotting that are not part of
the other problems. However, the same difference between control
and treatment is seen for this problem as for the others.

5.3 Discussion
The data in Table 4 and summarized in Figure 3 indicates that there
is an accelerated level of learning in the treatment over the control
group at the point of the embedded post-test, but that by the end
of the instruction the control group has closed the gap with the
treatment groups. Two interpretations of this data are possible. One
interpretation is that additional practice (classwork and homework
problems) and additional interaction with the course staff (in class
and during office hours) can compensate over time for the lack of
more effective feedback. Even with this interpretation the potential
demotivating impact on students of more failed attempts and the
need for more staff interaction should be kept in mind. Anecdotally,
there was a highly noticeable decline in the need for interaction
with the course staff during the two treatment semesters. A second
interpretation is that the quality of the feedback in the first part
of the instruction is better than that during the later part of the
instruction. Our analysis of student solutions for the later part of
the instruction should be revisited in this light. If the feedback can
be improved, it is possible that the performance gap might persist.

On the programming tasks, the feedback intervention helped to
improve the level of success by about 10%. We believe that with
refinement, this degree of improvement can be increased.

Another impact of the feedback intervention can only be re-
ported anecdotally. In the case of the control group the course staff
played a proactive role in probing students’ progress and offering
help. This included undergraduate teaching assistants who were
paired with fixed groups of students in a ratio of approximately
16:1. In contrast, during both interventions the course staff played a
reactive role, only providing assistance when explicitly asked for by
a student. The course instructors noted a dramatic drop in the level
of help required of the course staff. This is especially significant in
the light of the students’ increased performance on the post-tests.

Another observation is that while the treatment group performed
equivalently on conceptual questions (multiple choice test) com-
pared to the control group by the end of the intervention, the
treatment group performed better on the free response questions.
It is positive that the feedback intervention did support a higher
level of students’ programming ability. However, this improve-
ment in programming ability did not seem to be associated with
an improvement on the multiple-choice test. One interpretation
is that the feedback intervention occurred in the context of free-
response questions similar to the questions on the post-tests. Thus,
the effect of the improved feedback transferred better to a similar,
constructive task, but not to the recall and analysis tasks of the
multiple-choice test. However, this explanation is not completely
satisfactory because the embedded post-test seemed to indicate
that there was a positive impact on the multiple-choice tests earlier.
Another interpretation is that after being given the same multiple

Session 7: Misconceptions ICER ’18, August 13–15, 2018, Espoo, Finland

165

choice test three different times (albeit, contextualized differently)
the students may have “learned” how to answer the questions. Ad-
ditional analysis will be needed to resolve this question.

Problems
Control
(x ,n)

Treatment
(x ,n,p,r)

S2017 F2017 S2018 All

All
Post-Test
Free

Response

x = 0.3227
s = 0.2781
n = 94

x = 0.3920
s = 0.3115
n = 125
p = 0.0919
r = 0.1140

x = 0.4987
s = 0.3585
n = 133
p = 0.0001
r = 0.2549

x = 0.4137
s = 0.3078
n = 258
p = 0.0127
r = 0.1330

Final
Post-Test
Free

Response

x = 0.3855
s = 0.3648
n = 83

x = 0.4858
s = 0.3544
n = 106
p = 0.0498
r = 0.1428

x = 0.4835
s = 0.3707
n = 121
p = 0.0622
r = 0.1307

x = 0.4845
s = 0.3636
n = 227
p = 0.0316
r = 0.1224

Table 5: Cumulative Student Performance on Post-Test Pro-
gramming problems

Problems
Control
(x ,n)

Treatment
(x ,n,p,r)

S2017 F2017 S2018 All

Embedded
Post-Test
Free

Response

x = 0.3253
s = 0.4948
n = 83

x = 0.4259
s = 0.3976
n = 108
p = 0.1576
r = 0.1024

x = 0.4463
s = 0.3873
n = 121
p = 0.0838
r = 0.1212

x = 0.4367
s = 0.3914
n = 229
p = 0.0774
r = 0.1000

Final
Post-Test
Free

Response 1

x = 0.3780
s = 0.4934
n = 82

x = 0.4571
s = 0.5013
n = 105
p = 0.2792
r = 0.0792

x = 0.4793
s = 0.5019
n = 121
p = 0.1550
r = 0.0999

x = 0.4709
s = 0.5010
n = 226
p = 0.1565
r = 0.0808

Final
Post-Test
Free

Response 2

x = 0.4125
s = 0.5006
n = 80

x = 0.5294
s = 0.5016
n = 102
p = 0.1185
r = 0.1158

x = 0.5268
s = 0.5010
n = 112
p = 0.1194
r = 0.1125

x = 0.5280
s = 0.5001
n = 214
p = 0.0785
r = 0.1027

Table 6: Student Performance on Individual Post-Test Pro-
gramming Problems

5.4 Mistake Driven Analysis
The previous sections have established that Misconception-Driven
Feedback supports acquisition of student programming skills and
conceptual knowledge. This section focuses on the particular role
that misconceptions play in deeply analyzing student program-
ming problems. Recall from Section 3.1, that a mistake is a vector
of misconceptions. By cross-referencing mistake vectors we mean
identifying the misconceptions common to the cross-referenced
mistakes. Through cross-referencing we can isolate misconcep-
tions. To highlight the power of this approach, we present some
examples below. Specifically, we divide the discussion into three
parts. The first part demonstrates how MDF can be used to more

deeply analyze mistakes. The second part demonstrates how new
misconceptions can be discovered by using MDF. The third part
demonstrates how MDF can be used to understand and reason
about the impact of the feedback on students.

To illustrate this approach, we analyze mistakes made by stu-
dents that were identified in the second free response problem:

The data block in the BlockPy canvas below
provides a list of the per capita income of each
state. Write an algorithm that computes and
prints the number of states with a per capita
income greater than 28000 dollars.

This problem asks a student to count (the number of states) and
filter (include only a portion of the data) using iteration.

5.4.1 Deeper Analysis. One mistake we observe in this problem
is the absence of the pattern seen in Figure 4. This pattern indicates

Figure 4: Mistake Example 2

that a student is missing the statement to count the items in the
list. In the treatment group, 43.81% exhibited this mistake, while
57.32% of the control group exhibited this mistake. While this is an
improvement over the control group, MDF can facilitate a deeper
analysis. Mistake 2 is indicative of multiple possible misconceptions,
including but not limited to:

• The student does not understand the difference between
summing and counting.

• The student does not understand the difference between an
accumulator (count) vs. the iteration variable (item).

• The student does not understand that the iteration variable
(item) takes on each value of the list (list).

In the treatment group, 99 of 226 treatment solutions made mis-
take 2. To more deeply analyze this mistake, we also detect the
co-occurence of another mistake: the presence of the code pattern
shown in Figure 1b. By cross-referencing these two mistakes, we
increase the evidence that the student has the misconception of
not understanding the difference between summing and counting.
However, this pairing of mistakes accounts for only 20 of the 99
occurrences of mistake 2, suggesting that the remaining 79 occur-
rences have to be one of the other misconceptions associated with
mistake 2. By cross-referencing with other mistakes we might be
able to isolate the frequency of the other two misconceptions.

5.4.2 Discovering New Misconceptions. Cross-referencing mis-
takes can also reveal newmisconceptions. For example, in the above
problem, 61 students had mistake 2 plus another anticipated mis-
take: a missing print statement. An inspection of the programs
of these 61 students showed that 51 of them incorrectly used an
append statement. This pairing of mistakes, made by a substantial
number of students, indicates the existence of an unexpected mis-
conception: confusing creating a list of items with counting the

Session 7: Misconceptions ICER ’18, August 13–15, 2018, Espoo, Finland

166

number of these items. Although recognizable in retrospect, this
misconception only emerged through the MDF analysis.

5.4.3 Understanding Anomalies. Finally, MDF can be used to
diagnose anomalous results in student data. Consider mistake 3
shown in Figure 5, the absence of a necessary conditional check. The
control group exhibited this mistake in 1.22%(1) of its population
whereas the treatment condition exhibited mistake 3 in 12.83%(29)
of its population. While overall performance of the treatment group
was better than the control group with respect to the free response
in general, this particular mistake contradicts the general result.
Cross-referencing mistakes allows us a deeper understanding and
suggests why the feedback had a negative impact on this mistake.

Figure 5: Mistake Example 3

These three cases cross-reference mistake 3 with other mistakes:
Case 1 : income >= 28000 or income <= 28000 or
income < 28000
• condition wrong and no other feedback
Case 2 : income > “28000” or income >= “28000”
• condition wrong, output wrong, and incompatible types
Case 3 : income > 2800 or income >= 2800
• condition wrong, and output wrong

The feedback associated with this mistake is “In this problem
you should be finding XXX above/below XXX units”, where XXX,
above/below, and units are contextualized with specific problems).

Case 2 is interesting because students in the treatment group
did not receive feedback about incompatible types (the runtime
feedback the control received by default), because this message was
superseded by the feedback associated with mistake 3. This case
accounts for 38%(11) of the occurrences of mistake 3 in the treat-
ment group. This particular error indicates an issue with students’
awareness of operations on data types. This particular misconcep-
tion coincides with results from our post-tests, as discussed in [12].
This suggests a failure of our feedback, contradicting our goal of
grounding feedback in misconceptions. Our failure lay in choosing
to provide feedback about the mistake (pointing to the incorrect
comparison) rather than the underlying misconception (confusing
the types of numbers vs. strings). Case 3, rather than being a mis-
conception, is likely a typo or careless reading by the students. Case
3 captures 41%(12) of the occurrences of mistake 3. Of the 12 in Case
3, 11 were “income > 2800.” This means of the 29 occurrences of
mistake 3, only 7 of these were issues with conditionals. Correcting
for these, misconceptions with conditionals parallels performance
in the control group (1.22% vs 3.1%). These nuances demonstrate
how MDF allows more critical analysis of free response data.

6 THREATS TO VALIDITY AND LIMITATIONS
While the results presented in this work are promising, there are
several threats to validity. First, in the pretest for the control group,

one of the class sections for the control had technical difficulties
and took the quiz outside class. However, a Mann-Whitney U test
between the two sections in the control showed no significant differ-
ences in pretest results. Second, feedback creation, misconception
identification, and analysis were all done by the same researchers.
Despite our efforts to be guided by the analysis of data and the
principles of instructional design, it is possible that the perspectives
of the team were too similar, allowing alternate explanations to be
overlooked. Third, UTAs were instructed to be more passive in the
treatment group as opposed to the active assistance they provided
in the control group. This change may have required students to be
more self-reliant in their learning even in the absence of the MDF
feedback. However, one of our aims is to reduce UTA workload.

There are limitations in this work. First, our population was a
specific demographic of non-technical majors. It is unknown how
MDF would affect CS majors. Second, we only targeted a specific
unit of instruction (collection-based iteration). Future work includes
targeting different units of instruction. For both limitations, the
specific misconceptions and feedback may change with different
populations or topics. However, we do believe that the method itself
would prove equally useful in other contexts.

7 CONCLUSIONS
In this paper we presented and assessed misconception-driven feed-
back (MDF). Informed by cognitive learning theory, the learner
model underlying MDF focuses on the mental misconceptions that
learners reveal by their observed mistakes. The philosophy of MDF
is that immediate formative feedback about an observed mistake
should address the underlying misconception. We evaluated MDF
using both quantitative and descriptive analysis of a three semester
quasi-experimental study. Quantitatively, there was a statistically
significant, 10% increase in performance on open-ended program-
ming problems and an acceleration in performance on a multiple-
choice quiz. This improvement occurred despite the removal of
MDF during the assessment and the deliberate reduction of proac-
tive assistance from the course staff during the instruction. The
cross-referencing of mistakes allowed us to reason about the under-
lying misconceptions in more precise way than would otherwise be
possible. This analysis also revealed new misconceptions, allowing
additional feedback to be created. The analysis enables instructors
to have deeper insight into their learners and identify instructional
improvement that will address persistent misconceptions.

In a broader context, MDF provides a novel and practical connec-
tion between learning and instruction about programming. Miscon-
ceptions result from cognitive breakdowns in learning. Mistakes,
the manifestation of the breakdown in practice, point to areas of
insufficient instruction or where the instruction should be recon-
sidered. This connection between the theory of learning and the
pragmatics of instructional design offers not only an opportunity
for more effective feedback but also the possibility of more coherent
and integrated learning environments.

ACKNOWLEDGMENTS
This work is supported in part by National Science Foundation
grants DUE 1624320, DUE 1444094, and DGE 0822220.

Session 7: Misconceptions ICER ’18, August 13–15, 2018, Espoo, Finland

167

REFERENCES
[1] John R Anderson, Daniel Bothell, Michael D Byrne, Scott Douglass, Christian

Lebiere, and Yulin Qin. 2004. An integrated theory of the mind. Psychological
review 111, 4 (2004), 1036.

[2] John R Anderson, Frederick G Conrad, and Albert T Corbett. 1989. Skill acquisi-
tion and the LISP tutor. Cognitive Science 13, 4 (1989), 467–505.

[3] Austin Cory Bart, Javier Tibau, Eli Tilevich, Clifford A Shaffer, and Dennis Kafura.
2017. BlockPy: An Open Access Data-Science Environment for Introductory
Programmers. Computer 50, 5 (2017), 18–26.

[4] Brett A Becker. 2015. An exploration of the effects of enhanced compiler error
messages for computer programming novices. Master’s thesis. Dublin Institute of
Technology.

[5] Benjamin S Bloom. 1984. The 2 sigma problem: The search for methods of group
instruction as effective as one-to-one tutoring. Educational researcher 13, 6 (1984),
4–16.

[6] Gary M Brosvic and Beth D Cohen. 1988. The horizontal-vertical illusion and
knowledge of results. Perceptual and motor skills 67, 2 (1988), 463–469.

[7] Ricardo Caceffo, Steve Wolfman, Kellogg S. Booth, and Rodolfo Azevedo. 2016.
Developing a computer science concept inventory for introductory program-
ming. In Proceedings of the 47th ACM Technical Symposium on Computer Science
Education. ACM, 364–369.

[8] Jacob Cohen. 1988. Statistical power analysis for the behavioral sciences. 2nd.
[9] Albert T Corbett and John R Anderson. 2001. Locus of feedback control in

computer-based tutoring: Impact on learning rate, achievement and attitudes.
In Proceedings of the SIGCHI conference on Human factors in computing systems.
ACM, 245–252.

[10] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent
tutoring systems for programming education: a systematic review. In Proceedings
of the 20th Australasian Computing Education Conference. ACM, 53–62.

[11] Roberta E Dihoff, Gary M Brosvic, and Michael L Epstein. 2003. The role of
feedback during academic testing: The delay retention effect revisited. The
Psychological Record 53, 4 (2003), 533–548.

[12] Luke Gusukuma, Austin Cory Bart, Dennis Kafura, Jeremy Ernst, and Katherine
Cennamo. 2018. Instructional Design+ Knowledge Components: A Systematic
Method for Refining Instruction. In Proceedings of the 49th ACM Technical Sym-
posium on Computer Science Education. ACM, 338–343.

[13] Georgiana Haldeman, Andrew Tjang, Monica Babeş-Vroman, Stephen Bartos, Jay
Shah, Danielle Yucht, and Thu D Nguyen. 2018. Providing Meaningful Feedback
for Autograding of Programming Assignments. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education. ACM, 278–283.

[14] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Björn Hartmann. 2017. Writing Reusable Code Feedback
at Scale with Mixed-Initiative Program Synthesis. In Proceedings of the Fourth
(2017) ACM Conference on Learning@ Scale. ACM, 89–98.

[15] Lisa Kaczmarczyk, Elizabeth Petrick, J Philip East, and Geoffrey L Herman. 2010.
Identifying student misconceptions of programming. In Proceedings of the 41st
ACM technical symposium on Computer science education. ACM, 107–111.

[16] Dennis Kafura, Austin Cory Bart, and Bushra Chowdhury. 2015. Design and
Preliminary Results From a Computational Thinking Course. In Proceedings of the

2015 ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’15). ACM, 63–68.

[17] Donald E Knuth. 1969. The art of computer programming. Vol. 1: Fundamental
algorithms. Second printing.

[18] Kenneth R Koedinger, Vincent Aleven, Neil Heffernan, Bruce McLaren, and
Matthew Hockenberry. 2004. Opening the door to non-programmers: Author-
ing intelligent tutor behavior by demonstration. In International Conference on
Intelligent Tutoring Systems. Springer, 162–174.

[19] Kenneth R Koedinger, Albert T Corbett, and Charles Perfetti. 2012. The
Knowledge-Learning-Instruction framework: Bridging the science-practice
chasm to enhance robust student learning. Cognitive science 36, 5 (2012), 757–798.

[20] Einari Kurvinen, Niko Hellgren, Erkki Kaila, Mikko-Jussi Laakso, and Tapio
Salakoski. 2016. Programming misconceptions in an introductory level program-
ming course exam. In Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education. ACM, 308–313.

[21] Nguyen-Thinh Le. 2016. A classification of adaptive feedback in educational
systems for programming. Systems 4, 2 (2016), 22.

[22] David J Nicol and Debra Macfarlane-Dick. 2006. Formative assessment and
self-regulated learning: A model and seven principles of good feedback practice.
Studies in higher education 31, 2 (2006), 199–218.

[23] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, and Leonidas Guibas. 2015. Learning program embeddings to propagate
feedback on student code. arXiv preprint arXiv:1505.05969 (2015).

[24] ThomasW Price, Yihuan Dong, and Tiffany Barnes. 2016. Generating Data-driven
Hints for Open-ended Programming.. In EDM. 191–198.

[25] Thomas W Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: Towards
Intelligent Tutoring in Novice Programming Environments. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education. ACM,
483–488.

[26] Kelly Rivers and Kenneth R Koedinger. 2017. Data-driven hint generation in
vast solution spaces: a self-improving python programming tutor. International
Journal of Artificial Intelligence in Education 27, 1 (2017), 37–64.

[27] Takayuki Sekiya and Kazunori Yamaguchi. 2013. Tracing quiz set to identify
novices’ programming misconceptions. In Proceedings of the 13th Koli Calling
International Conference on Computing Education Research. ACM, 87–95.

[28] Valerie J Shute. 2008. Focus on formative feedback. Review of educational research
78, 1 (2008), 153–189.

[29] Teemu Sirkiä and Juha Sorva. 2012. Exploring programming misconceptions: an
analysis of studentmistakes in visual program simulation exercises. In Proceedings
of the 12th Koli Calling International Conference on Computing Education Research.
ACM, 19–28.

[30] Juha Sorva and Teemu Sirkiä. 2011. Context-sensitive guidance in the UUhistle
program visualization system. In Proceedings of the 6th Program Visualization
Workshop (PVWâĂŹ11). 77–85.

[31] JC Spohrer and Elliot Soloway. 1986. Alternatives to construct-based program-
ming misconceptions. In Acm sigchi bulletin, Vol. 17. ACM, 183–191.

[32] Marieke Thurlings, Marjan Vermeulen, Theo Bastiaens, and Sjef Stijnen. 2013.
Understanding feedback: A learning theory perspective. Educational Research
Review 9 (2013), 1–15.

Session 7: Misconceptions ICER ’18, August 13–15, 2018, Espoo, Finland

168

	Abstract
	1 Introduction
	2 Background
	2.1 Cognitive Theory
	2.2 Misconceptions in Programming
	2.3 Formative Immediate Feedback
	2.4 Intelligent Tutoring and Hint Generation Systems

	3 Approach
	3.1 Learner Model
	3.2 Detecting Mistakes
	3.3 Feedback Delivery

	4 Experimental Design
	4.1 Class Description
	4.2 Demographics
	4.3 Curriculum and Learning Environment
	4.4 Assessment

	5 Results and Analysis
	5.1 Multiple Choice Tests
	5.2 Free Response Tests
	5.3 Discussion
	5.4 Mistake Driven Analysis

	6 Threats to Validity and Limitations
	7 Conclusions
	Acknowledgments
	References

